Decision support for multi-component systems: visualizing interdependencies for predictive maintenance
Files
Date
2022-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Taking dependencies between components seriously and considering the multi-component perspective instead of the single-system perspective could help to improve the results of predictive maintenance (PdM). However, modeling and identifying the interdependencies in complex industrial systems is challenging. A way to tackle this challenge and to identify interdependencies is using visualization. To the best of our knowledge, existing research on visualizing interdependencies is not applied to multi-component systems (MCS) so far. Further, it is not clear how visualization approaches can provide suitable decision support to identify interdependencies in PdM tasks. We evaluate three key visualization approaches to represent interdependencies in the context of PdM for MCS using a crowd-sourced design study in a questionnaire survey involving 530 participants. Based on our study, we were able to rank these approaches based on performance and usability for our given PdM task. The multi-line approach outperformed other approaches with respect to performance.
Description
Keywords
Interactive Visual Analytics and Visualization for Decision Making, decision support, interdependencies, multi-component systems, predictive maintenance, visualization
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.