Fair Engineering of Machine Learning Systems – Lessons Learned from a Literature Review

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

With the growing prevalence of AI algorithms and their use to prepare and even execute decisions, there is increasing debate about whether the results of machine learning systems tend to be fairer or more unfair. When faced with engineering a fair machine learning solution in practice, trade-offs arise between conflicting fairness notions. We conduct a literature review on this topic. The results of our review indicate that a slight consensus exists that the human concept of fairness is much broader than what lies in the scope of current fairness metrics. We discuss the context of judging fairness metrics. We also find that, albeit much research already has been done, there is room for improvement when seeking to generalize the findings across different scenarios.

Description

Keywords

The Dark Sides of AI, fairness, fairness perceptions, justice, machine learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.