Towards a Quantitative Evaluation Framework for Trustworthy AI in Facial Analysis

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

7821

Ending Page

Alternative Title

Abstract

As machine learning (ML) models are increasingly being used in real-life applications, ensuring their trustworthiness has become a rising concern. Previous research has extensively examined individual perspectives on trustworthiness, such as fairness, robustness, privacy, and explainability. Investigating their interrelations could be the next step in achieving an improved understanding of the trustworthiness of ML models. By conducting experiments within the context of facial analysis, we explore the feasibility of quantifying multiple aspects of trustworthiness within a unified evaluation framework. Our results indicate the viability of such a framework, achieved through the aggregation of diverse metrics into holistic scores. This framework can serve as a practical tool to assess ML models in terms of multiple aspects of trustworthiness, specifically enabling the quantification of their interactions and the impact of training data. Finally, we discuss potential solutions to key technical challenges in developing the framework and the opportunities of its transfer to other use cases.

Description

Keywords

Trustworthy Artificial Intelligence and Machine Learning, evaluation, facial analysis, trustworthy ai

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.