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Abstract

As machine learning (ML) models are increasingly
being used in real-life applications, ensuring their
trustworthiness has become a rising concern.
Previous research has extensively examined individual
perspectives on trustworthiness, such as fairness,
robustness, privacy, and explainability. Investigating
their interrelations could be the next step in achieving
an improved understanding of the trustworthiness of
ML models.

By conducting experiments within the context of
facial analysis, we explore the feasibility of quantifying
multiple aspects of trustworthiness within a unified
evaluation framework. Our results indicate the viability
of such a framework, achieved through the aggregation
of diverse metrics into holistic scores. This framework
can serve as a practical tool to assess ML models in
terms of multiple aspects of trustworthiness, specifically
enabling the quantification of their interactions and the
impact of training data. Finally, we discuss potential
solutions to key technical challenges in developing the
framework and the opportunities of its transfer to other
use cases.

Keywords: Trustworthy AI, Evaluation, Facial
Analysis

1. Introduction

As the use of machine learning (ML) systems
in real-life applications increases, there is a growing
demand for their trustworthiness. In response, several
research fields, such as Explainable AI (XAI) or
privacy-preserving machine learning, investigate certain
perspectives of the trustworthiness of ML models.
However, current literature also has started to analyze

select combinations of aspects (Balagopalan et al.,
2022; Schrouff et al., 2022; Shokri et al., 2021;
C. Tran et al., 2021). In this context, Trustworthy
AI represents an area of research that investigates
how a safe, transparent, and responsible use of AI
can be ensured, to increase user trust (X. Liu et al.,
2021). It includes multiple perspectives from which
the concept of the trustworthiness of ML models can
be approached. The aspects of fairness, robustness,
privacy, and explainability are addressed particularly
frequently (Li et al., 2023). Operationalizing these
perspectives could be the next step towards an improved
understanding of the trustworthiness of ML models.

In this study, we leverage the context of facial
analysis to assess the viability of quantifying diverse
aspects of trustworthiness within a unified evaluation
framework. We investigate the performance of
ResNet models, trained on public facial image datasets,
with regard to fairness, robustness, privacy, and
explainability. Using this experimental basis, we
explore the design of a framework that aggregates
multiple quantitative metrics into comprehensive scores.

Overall, our findings indicate that this proposed
framework can serve as an effective tool for gaining
insights into the trustworthiness of ML models. We
observe that a single score, which encompasses several
dimensions of trustworthiness, is useful for a first
overview, however, it may occlude trade-offs between
different dimensions. Conversely, our results suggest
the feasibility of formulating an aggregated score
for each dimension, thereby facilitating performance
comparisons across multiple models. Applying
our framework to four different datasets indicates
its potential utility in revealing the relationships
between various perspectives of trustworthiness and in
examining the impact of dataset characteristics on model
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trustworthiness. We further discuss the key technical
challenges associated with this framework, including
the selection of relevant metrics, their normalization
and aggregation, and evaluate the adaptability of our
framework to other use cases.

2. Fundamentals

Our approach towards quantifying trustworthiness
within an evaluation framework is based on four aspects
of trustworthiness, namely fairness, robustness, privacy,
and explainability.

2.1. Fairness

The concept of fairness in ML aims to ensure that
decisions made by algorithms are not biased toward
specific individuals or population groups. Unfair
behavior can arise from potential biases in the training
data or certain design decisions in the algorithm itself
(Mehrabi et al., 2021). Various definitions of fairness
exist, which can be categorized into group-based and
individual-based approaches. Group fairness is based
on the concept that certain groups, defined by sensitive
attributes, should be equally likely to be classified into a
particular category, whereas individual fairness relies on
the idea that similar individuals should receive similar
model outputs (Caton & Haas, 2020).

2.2. Robustness

Robustness ensures the performance of ML models
in a variety of circumstances. When used in practice,
ML models may encounter data containing various
types of perturbations misleading the model, which can
be naturally occurring or intentionally crafted (X. Liu
et al., 2021). Robustness to distribution shift refers to
the ability of an ML model of performing well under
changes between the distribution of the data a model
was trained on and the distribution of a test set (D. Tran
et al., 2022). Robustness to adversarial attacks refers to
the ability of a model to resist being misled by nearly
imperceptible perturbations of the input data. White
box evasion attacks, where an attacker can access the
model and carefully craft fraudulent test samples, are
often used to evaluate model robustness in this context
(Brendel et al., 2019).

2.3. Privacy

Privacy in ML entails protecting personal data used
by models (de Cristofaro, 2020). A breach occurs when
training data or model parameters can be deduced from
the model via various attack methods (de Cristofaro,

2020). Many of these assume the availability of a query
interface allowing data input (de Cristofaro, 2020).
However, usually, third parties only receive model
outputs like confidence scores or predicted labels. Such
outputs can be exploited through different attacks, such
as membership inference, model inversion, or model
extraction (Al-Rubaie & Chang, 2019).

2.4. Explainability

Explainability in ML refers to an ML model’s
capacity to explain its decision-making process (Adadi
& Berrada, 2018). Models are often classified as
white-box or black-box based on their interpretability
(Carvalho et al., 2019). White-box models, such as
linear models or decision trees, provide explanations
through their inherent functionality. Conversely,
black-box models like deep neural networks or support
vector machines necessitate post-hoc methods for
explanations (Adadi & Berrada, 2018).

3. Quantifying Trustworthiness

Based on the context of facial analysis, we test
the feasibility of quantifying multiple aspects of
trustworthiness, namely fairness, robustness, privacy,
and explainability within a single evaluation framework.
According to Buolamwini and Gebru (2018), the
field of facial analysis addresses a range of tasks
connected to the ML-based perception of faces,
such as face detection, face recognition, and gender
classification. Given the pervasive use of facial analysis
algorithms, ranging from smartphone access control
to law enforcement, potential discriminatory behaviour
based on gender or ethnicity are concerns. Their
responsible use demands an extensive evaluation of the
underlying ML models’ trustworthiness.

To assess the trustworthiness of ML models, we
select the use case of gender classification. Based on
facial images we train a classification model that can
predict if the person in an image is male or female. We
employ a ResNet-50 model, pre-trained on ImageNet,
which is a popular setup for image classification tasks.
After training, model predictions on a test partition are
evaluated to assess its trustworthiness.

3.1. Datasets and Training Procedure

We evaluate our gender classifier using four
public facial image datasets, setting gender as target
and race or age as sensitive attributes, based on
dataset annotations. All attributes are binarized for
simplification, grouping race into white and non-white
if required, as in prior ML fairness studies (Buolamwini
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& Gebru, 2018), although they are not inherently binary.
The datasets’ sizes and demographic distributions vary,
as depicted in Figure 1. LFWA+ (Z. Liu et al., 2015)
and UTKFace (Z. Zhang et al., 2017) have fewer
samples than FairFace (Karkkainen & Joo, 2021) and
CelebA (Z. Liu et al., 2015). LFWA+ and CelebA
show notable demographic imbalances, FairFace is
imbalanced only for race, while UTKFace is nearly
balanced.

We use an 80-10-10 train-validation-test-split for
each dataset, with the testset adjusted for distribution of
target and sensitive attributes to ensure unbiased model
evaluation. The model is trained with cross-entropy
loss function and Adam, common choices for image
classification tasks, with a batch size of 64. Training
is halted if validation loss stagnates for 10 consecutive
epochs to avoid overfitting.

3.2. Selection of Evaluation Metrics

Our approach focuses on four key dimensions:
fairness, robustness, privacy and explainability. We
started with a baseline of metrics that are commonly
used in each respective research area, as well as those
implemented in popular toolboxes. We tested their
applicability and validity in our setting, resulting in a
selection of 21 metrics forming a solid starting point for
measuring trustworthiness.

Fairness. The dimension of fairness evaluates,
if the performance of our gender classification model
is influenced by peoples’ characteristics of race or
age. In current literature, mostly group-fairness
metrics are considered to assess biased behaviour,
comparing a model’s performance on subgroups
defined by a sensitive attribute (Caton & Haas,
2020). We select typical classification metrics,
such as Accuracy, Precision, Recall/True Positive
Rate (TPR) and False Positive Rate (FPR), and
calculate their value difference between subgroups.
Additionally, we compute the two widely used fairness
metrics of Demographic Parity (DemP) difference and
Equalized Odds (EOd) difference. DemP requires that
the probability of being classified with the positive label
is equal across groups (Berk et al., 2021). EOd defines
a model as fair if TPR and False Negative Rates are
equal across groups (Hardt et al., 2016). All analyses are
conducted using scikit-learn and Microsoft’s fairlearn
package.

Robustness. By including robustness in our
evaluation, we aim to measure to which extent our
classification model stays reliable under circumstances
where image samples deviate from the training data.
To cover different situations, we collect a set of seven

metrics evaluating the robustness to distribution shift
and adversarial attacks. The former can be measured
by comparing a model’s performance on an original
and a shifted test set (Taori et al., 2020). We
apply the augmentation technique Augmix (Hendrycks
et al., 2019) to create perturbed images, which mixes
randomly generated augmentations, e.g. rotations and
color swapping, thereby simulating a shift in the data
distribution. Inspired by D. Tran et al. (2022), we
measure the model’s Accuracy, the ROC-AUC-Score,
and the Brier Score Loss on the original test set, as
well as on a shifted test set by using scikit-learn, and
calculate the value differences between both sets.

Another way to measure robustness is against
adversarial attacks. These attacks craft adversarial
samples intended to cause erroneous model predictions
during inference. They are created by introducing
small perturbations restricted by Lp-Norm to existing
samples (Goodfellow et al., 2014). The model’s
robustness can be measured by evaluating its accuracy
on the adversarial samples (Brendel et al., 2019). Due to
the high computational effort of such attacks, we reduce
ourselves to two exemplary and commonly known
L∞-Norm adversarial attacks: The Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2014)
and Projected Gradient Descent (PGD) (Madry
et al., 2017). We compare the original accuracy
to the model’s accuracy under these attacks by
calculating the respective differences. To additionally
include attack-independent metrics, we select the
CLEVER-Score (Weng et al., 2018), measuring the
minimum amount of distortion required to fool a model,
and Loss Sensitivity, measuring the effect of each data
sample on the average loss (Arpit et al., 2017). For
all named metrics, we use the implementations of the
Adversarial Robustness Toolbox (ART).

Privacy. Our privacy evaluation assesses the
model’s vulnerability to malicious attacks that
seek to deduce private information from the ML
model, focusing on two attack types, following the
implementations of Y. Liu et al. (2022). We utilize a
Membership Inference Attack (MembInf) to assess
the model’s vulnerability to reveal if a specific sample
was part of its training data (Shokri et al., 2017). We
explore two scenarios: one in which an adversary trains
the attack model using a shadow model, and another
where the attacker has access to some original training
data. The success of these attacks is quantified using
the ROC-AUC-Score of the attack model on the attack
test set.

We also conduct a Model Extraction Attack
(ModExt) to examine the risk of unauthorized access
to intellectual property or sensitive knowledge within
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the model (Chandrasekaran et al., 2020). Here, the
adversary tries to clone the original model’s behavior.
Two scenarios are assessed, based on the access to the
original training data as outlined by Tramèr et al. (2016):
one with a similar-distribution shadow dataset and the
other with some actual training data. The effectiveness
of these attacks is quantified by the attack model’s
Accuracy.

Explainability. Given the potential implications
of facial analysis model decisions, it’s crucial to
provide interpretable explanations. We apply a post-hoc
method to our black-box model, the ResNet-50, to
derive explanations for its outputs. To evaluate
the model’s explainability, we follow a two-stage
process. Firstly, saliency maps are generated via
a method by Simonyan et al. (2013) that highlights
each pixel’s significance for the model’s prediction.
Secondly, we compute quantitative metrics to examine
the explanations’ characteristics, focusing on four key
metrics. Robustness measures the sensitivity of an
explanation to slight input data modifications (Yeh
et al., 2019). Faithfulness refers to the accuracy of
importance scores generated by the saliency function,
reflecting each input’s significance for the model’s
prediction (Bhatt et al., 2020). For Randomization,
we compare explanations for model inputs to those
generated on a random logit, as per Sixt et al.
(2019); high similarity suggests greater explanation
randomness. The explanation’s Complexity denotes
the number of input features required to clarify the
model’s output; effective explanations are concise and
avoid irrelevant features (Chalasani et al., 2020). We
implement this using the quantus framework, limiting
the computations to a random sample of 512 test set
images due to high computational demands.

3.3. Designing a Score-Based Framework

Having selected a base of metrics covering the
four dimensions of fairness, robustness, privacy, and
explainability, we aim to express their values in
comprehensive scores to facilitate the estimation of a
ML model’s trustworthiness. We choose the following
procedure to design our framework:

1. For each metric, its value is scaled between 0 to 10
resulting in a “Metric Score”, where a score of 10
represents the optimal value for the corresponding
metric. For this purpose, the respective value
ranges of the metrics are projected onto the named
scale by defining their limit values.

2. For each dimension, the metric scores are
summarized into one “Dimension Score” (DS) by

calculating their mean. Each DS displays how
well the model performs in the corresponding
dimension.

3. The DS for robustness, fairness, privacy, and
explainability are used to calculate the average of
all DS resulting in the overall “Trustworthiness
Score” (TS). The TS represents the overall
trustworthiness of the model as an aggregation
across all dimensions.

4. Since a high prediction accuracy is a prerequisite
for ML models, we compare our DS and TS to an
“Accuracy Score” (AS) calculated by normalizing
the model accuracy on the test set to the usual
scale of 0 to 10.

3.4. Experimental Results

The results of applying our proposed evaluation
framework to four different datasets, shown in Table 1,
are described in the following, structured along the
evaluated dimensions. Each experiment was conducted
five times and we report the mean values. Due
to the computational complexity of the experiments,
especially for large datasets, we restricted ourselves to
five runs. However, we found the variation between runs
to be small for most of the examined metrics. The metric
correlation matrices are depicted in the supplemental
materials.1

Fairness Score. The fairness score displays
substantial variations across datasets. The models
trained on the more balanced datasets of FairFace
and UTKFace achieve the highest fairness scores of
almost 10. In comparison, models trained on the
clearly imbalanced CelebA and especially LFWA+ show
significantly lower results. The biases of the training
data seem lead to more inaccurate predictions for the
not young or non-white group, often being incorrectly
classified as male.

For FairFace, the metrics of TPR and precision,
as well as FPR difference are negatively correlated.
Regarding the nearly equally distributed UTKFace
dataset, the scores are at a slightly lower level than
FairFace except for DemP difference, but all fairness
metrics show positive correlations among each other.
In contrast, a strong trade-off between TPR difference
and all other fairness metrics is observed for CelebA.
For LFWA+, additional to negative correlations between
TPR and precision, as well as FPR difference, a trade-off
relationship between DemP and accuracy difference can
be noticed. The results also show a strong disparity
between EOd difference and DemP difference.

1https://github.com/anniSc/TAI-Evaluation
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Robustness Score. The robustness score shows
significant variations across datasets, driven by a high
degree of variability in metrics measuring robustness to
adversarial samples. CelebA and LFWA+ models show
the strongest overall performance, with a significantly
high CLEVER-Score for CelebA, and accuracy under
attacks for LFWA+. In contrast, the FairFace and
UTKFace models exhibit a decrease in accuracy under
distribution shift, and particularly low scores for
adversarial attacks and CLEVER.

Overall, the distribution shift metrics exhibit only
minor variations across datasets while being positively
correlated to each other. Regarding the attacks, the
robustness to PGD is generally very low compared
to FGSM and a trade-off between both attacks exists,
except for LFWA+. Regarding the attack-independent
metrics, the CLEVER-Score appears to be highly
variable and dependent on the dataset, while generally
being positively correlated to the attack-based metrics.
The loss sensitivity shows the opposite behaviour to this.

Privacy Score. The privacy score results
demonstrate minor discrepancies across datasets.
FairFace-trained models achieve the highest privacy
score, balancing resistance to all attacks. Models
trained on LFWA+ withstand model extraction attacks
better, yet are more vulnerable to membership inference
attacks. The UTKFace and CelebA-trained models
display opposite characteristics.

These scores reveal a trade-off between resisting
both membership inference and model extraction
attacks, consistent with prior studies (Y. Liu et al.,
2022). Our findings also support the idea that
a model’s vulnerability to privacy attacks is tied
to its generalization capability (Yeom et al., 2018).
Models trained on larger datasets, CelebA and Fairface,
are less susceptible to membership inference attacks
compared to the LFWA+ trained model, the smallest
dataset. This suggests stronger overfitting to training
samples, compromising generalization and increasing
vulnerability to membership inference. However, this
dynamic is inverted for model extraction attacks.

Explainability Score. Our selection of four
explainability metrics aims to assess the quality of
explanations generated via saliency maps. Overall,
we find the explainability scores to be the lowest
out of all trustworthiness dimensions. Especially, the
faithfulness scores are consistently low and show a
comparatively strong deviation across different runs.
The other examined metrics vary strongly between
datasets. Balanced datasets yield lower robustness and
complexity scores, implying a broader array of input
features is needed for significant explanations, which are
also more perturbation-sensitive. This aligns with the

less robust nature of models examined in the robustness
section. Explanations for more imbalanced datasets,
however, appear more random yet more robust and less
complex.

Trustworthiness Score and Accuracy Score. The
findings from our experiments indicate that the TS
across different datasets are fairly similar, attributed
largely to the compensating effects of differing DS. In
our study, AS were found to correlate positively with the
overall TS. For instance, models trained on the CelebA
dataset delivered the highest TS and AS. Despite
achieving the same TS, FairFace and UTKFace differed
in terms of robustness and explainability scores, with
UTKFace having a higher AS compared to FairFace.
Models trained on the LFWA+ dataset displayed the
lowest TS and a notably low AS.

Relationship between Dimensions. Our findings
highlight a trade-off involving privacy and various
other dimensions. Models that show less vulnerability
to privacy breaches often exhibit higher levels of
noise, reduced overall accuracy, potential inaccuracies
for specific groups, decreased explainability, and an
increased susceptibility to being misled by changing
situations. Moreover, our experimentation uncovers
a trade-off between fairness and robustness. This
might arise from the conflicting objectives: one seeks
to bolster the impact of sensitive attributes to attain
equality among different groups, while the other aims
to diminish the influence of certain attributes and
samples to enhance resilience. We also note a negative
correlation between fairness and explainability. On the
contrary, there exists a positive relationship between
robustness and explainability, possibly due to the fact
that heightened model robustness also results in more
resilient and simpler explanations.

Influence of Dataset Characteristics. Our
experiments reveal noticeable differences in fairness
and robustness scores across different datasets compared
to privacy and explainability, suggesting that dataset
attributes significantly affect these dimensions.
Specifically, an imbalanced distribution of target and
sensitive attribute classes tends to lower fairness but
enhance robustness and explainability. The increased
robustness in the CelebA dataset, despite its imbalance,
might be due to its larger size, leading to better
generalization. Similarly, LFWA+’s lower overall
accuracy and stronger randomness in predictions might
minimize performance drops due to distribution shift
and adversarial samples. However, these observations
may be correlative rather than causative, requiring
further research. Notably, training on larger datasets can
heighten the vulnerability to model extraction, while
tending to impede membership inference attacks.
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Figure 1. Demographic distributions of the selected facial image datasets

Table 1. Metric Scores, Dimension Scores, Trustworthiness Scores, and Accuracy Scores on four selected

datasets with the respective standard deviations in parantheses
UTKFace CelebA FairFace LFWA+

Fairness Score 9.69 (0.14) 9.40 (0.18) 9.74 (0.14) 7.20 (0.79)
Accuracy difference 9.65 (0.16) 9.71 (0.16) 9.81 (0.14) 7.42 (1.11)
Precision difference 9.68 (0.12) 9.20 (0.29) 9.76 (0.21) 7.06 (0.92)
TPR difference 9.62 (0.24) 9.70 (0.12) 9.76 (0.29) 7.22 (1.79)
FPR difference 9.68 (0.12) 9.17 (0.30) 9.74 (0.22) 6.83 (1.23)
DemP difference 9.92 (0.04) 9.44 (0.13) 9.79 (0.14) 8.61 (1.23)
EOd difference 9.57 (0.19) 9.15 (0.28) 9.59 (0.26) 6.03 (1.23)
Robustness Score 5.66 (0.17) 7.19 (0.41) 6.19 (0.27) 7.04 (0.48)
Accuracy drop 8.75 (0.47) 9.39 (0.14) 8.94 (0.51) 9.85 (0.92)
ROC-AUC-Score drop 9.71 (0.12) 9.86 (0.01) 9.44 (0.14) 9.41 (0.43)
Brier Score Loss increase 9.01 (0.26) 9.55 (0.08) 9.13 (0.45) 9.44 (0.39)
Accuracy drop under FGSM 1.03 (0.61) 4.47 (0.44) 4.63 (1.07) 6.01 (0.33)
Accuracy drop under PGD 0.48 (0.05) 0.46 (0.03) 1.92 (0.06) 2.20 (0.24)
CLEVER-Score 0.72 (0.31) 9.24 (3.16) 0.28 (0.11) 3.95 (3.77)
Loss Sensitivity 9.93 (0.04) 9.90 (0.06) 8.97 (0.27) 9.81 (0.02)
Privacy Score 6.26 (0.26) 5.12 (0.05) 6.61 (0.27) 6.34 (0.45)
ROC-AUC-Score MembInf 1 9.74 (0.05) 10.0 (0.00) 9.80 (0.05) 8.75 (0.33)
ROC-AUC-Score MembInf 2 9.84 (0.11) 9.62 (0.05) 9.85 (0.14) 8.62 (0.27)
Accuracy ModExt 1 3.73 (1.01) 0.62 (0.20) 4.50 (0.50) 5.16 (1.30)
Accuracy ModExt 2 1.75 (0.29) 0.24 (0.03) 2.29 (0.78) 2.82 (0.33)
Explainability Score 4.89 (0.10) 5.45 (0.31) 3.92 (0.18) 5.33 (0.21)
Robustness 8.31 (0.37) 9.12 (0.11) 4.51 (0.77) 9.32 (0.12)
Faithfulness 0.17 (0.22) 2.32 (1.38) 0.19 (0.36) 1.90 (0.84)
Randomization 5.65 (0.21) 3.20 (0.23) 5.67 (0.08) 2.58 (0.11)
Complexity 5.35 (0.11) 7.15 (0.11) 5.33 (0.05) 7.52 (0.08)
Trustworthiness Score 6.62 (0.07) 6.79 (0.17) 6.62 (0.11) 6.48 (0.30)
Accuracy Score 9.76 (0.02) 9.77 (0.01) 9.04 (0.03) 8.90 (0.11)

4. Insights and Challenges of the
Framework

Our findings demonstrate the inherent difficulty
in achieving a singular, comprehensive metric for
measuring trustworthiness. Although the TS serves
as a valuable initial indicator, relying solely on it
may obscure potential trade-offs between different
dimensions, as the DS can counterbalance each other,
leading to similar TS values. Furthermore, we highlight

the necessity of considering prediction accuracy as
a measure of general utility for a comprehensive
model evaluation. Nonetheless, introducing an
aggregated score for each dimension of trustworthiness
considerably simplifies the assessment of these
trustworthiness requirements. The DS condense a
complex array of metrics into interpretable scores,
enabling a rapid evaluation of an ML model’s
vulnerabilities. When comparing multiple models,
e.g. trained on different datasets, these scores promptly
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highlight variations in performance. Additionally,
patterns can be observed across datasets, suggesting
the impact of specific dataset characteristics, such
as distribution and size, on particular dimensions.
Furthermore, our framework allows for easy
investigation of the interrelationships between
dimensions, overall trustworthiness, and accuracy,
enabling the identification of similarities and trade-offs
among these aspects. The framework significantly
reduces complexity while providing valuable insights
into trustworthiness. However, during the development
of the framework, several technical challenges emerged,
which are discussed in the subsequent sections.

4.1. Metric Selection

One of the challenges in developing our framework
is the selection of appropriate metrics for each
dimension. Currently, our framework is based on
21 metrics that cover the four dimensions of fairness,
robustness, privacy, and explainability. In the following,
we provide insights into the interactions between
the metrics and their perceived suitability for the
framework.

Fairness. Our fairness assessment uses six metrics
that capture different aspects of group fairness. As
previous studies have explored (Kleinberg et al., 2016;
Wick et al., 2019), these metrics, and overall accuracy,
involve theoretical trade-offs. DemP aims to equalize
positive classification probabilities regardless of the
actual label, while EOd equalizes proportions based
on the ground truths. Precision difference focuses
on equalizing false positives, and TPR difference
focuses on equalizing false negatives. The distribution
of the training and test set significantly affects the
extent of these trade-offs. In perfectly balanced
settings, excellent results can be achieved for fairness
metrics and overall accuracy, as most likely fulfilled
by UTKFace models, while imbalanced training sets
normally amplify trade-offs. Our results reflect this
assumption by showing greater value variations and
trade-offs for more imbalanced training sets.

Our current selection of several group fairness
metrics provides an initial understanding of general
fairness behavior and the impact of the dataset
distribution. Since the values and relations of these
metrics highly depend on the datasets, it is not possible
to provide a universal recommendation for metric
selection. Given the subjective nature of fairness, it
is crucial to establish a primary definition of fairness
that aligns with the specific use case and select metrics
accordingly. By focusing on metrics that specifically
reflect the fairness goals, unnecessary trade-offs can be

avoided, leading to a more representative aggregated
fairness score. Moreover, apart from group fairness
metrics, approaches of individual fairness (Dwork et al.,
2011), might be considered in future work.

Robustness. Our robustness assessment
encompasses seven metrics that address distribution
shift and adversarial attacks, including both attack-based
and attack-independent metrics. In our experimental
results, the metrics for distribution shift do only
exhibit minor variations across datasets and thus have
a minor impact on the variation of the robustness score
compared to the adversarial metrics. Measuring not
only the accuracy drop, but also ROC-AUC, and Brier
Score difference under distribution shift illuminates
different performance aspects, which was especially
valuable for assessing UTKFace and FairFace models.
A more diverse approach is also recommended in
terms of the shift simulation. Exploring distribution
shift beyond our used augmentations, e.g. by using
other augmentation techniques or another testset,
could provide a more fine-grained estimation of model
robustness to real-world perturbations.

In terms of adversarial robustness, our findings
reveal notable variations in scores. It is important to
note that being robust against one type of adversarial
attack does not guarantee robustness against other
attacks. Therefore, we recommend conducting multiple
attacks to gain a comprehensive understanding of
the model’s vulnerabilities, although they are highly
computationally demanding. Apart from our selected
FGSM and PGD, various other attack types exist,
which could be considered for evaluating adversarial
robustness (Brendel et al., 2019). Regarding loss
sensitivity, we observed that a low impact of each data
sample on the average loss is not necessarily indicative
of the model’s robustness against a specific attack in
our case. Conversely, the CLEVER-Score shows a
positive correlation with the attack metrics, although its
results vary significantly across datasets, and can highly
deviate within multiple runs. These variations may arise
because the score is evaluated only on a small subset due
to its high computational demands. Further expanding
this subset could allow for more reliable conclusions to
be drawn.

Privacy. In creating our evaluation framework, we
use four primary metrics to gauge the performance of
black-box membership inference and model extraction
attacks under two distinct data scenarios. Black-box
membership inference attacks are preferred for their
computational efficiency in comparison to white-box
attacks and their robustness in assessing privacy leaks.
The two data scenarios reflect realistic threats: one
where the attacker trains a model using a shadow model,
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and another where the attacker accesses parts of the
training dataset, like in a data breach. We minimize
overfitting and overestimation of attack performance, as
in common benchmarks (Y. Liu et al., 2022), by using
early stopping in training. Model extraction attacks,
evaluated under the same conditions, supplement our
privacy assessment.

However, our chosen metrics might not cover
all potential privacy vulnerabilities. During our
research, we also attempted to implement model
inversion attacks (Fredrikson et al., 2015). However,
we were unable to successfully invert the models,
leading to their exclusion from our framework. This
situation underscores the complexities inherent in
the current state of model inversion attacks, and
points to the need for further research in this area.
Furthermore, researchers could consider exploring
additional assumptions regarding membership inference
attacks (Ye et al., 2022), evaluating differential
privacy measures (Dwork, 2008) or assessing the
effectiveness of data anonymization techniques such as
face de-identification (Gross et al., 2006).

Explainability. Our two-stage approach to
quantifying explainability begins with generating
saliency maps using the simple gradient
method (Simonyan et al., 2013), due to its lesser
computational demand compared to more intricate
methods like GradCAM (Selvaraju et al., 2017) or
Integrated Gradients (Sundararajan et al., 2017).

We adopt four metrics from the quantus framework,
namely Complexity, Randomization, Faithfulness, and
Robustness. This selection aims to cover diverse aspects
of explanation while keeping computational efficiency
in mind. Despite the Faithfulness metric demonstrating
notable variance across runs, the other metrics
show stability, indicating their potential reliability in
capturing specific dimensions of explainability.

Overall, we find that explainability is the toughest
dimension to quantify, due to its computational demands
and the variation induced through the additional
step of generating explanations. Future work could
also consider alternative methods like counterfactual
explanations (Sauer & Geiger, 2021) or surrogate
models like LIME (Ribeiro et al., 2016).

4.2. Normalization

We normalize the metric values on a scale of 0
to 10 for meaningful comparisons. To carry out
this normalization, a consensus on the minimum and
maximum values for each metric is necessary. In
theory, most metrics possess well-defined limits, often
ranging from 0 to 1, as is the case with accuracy.

However, empirical metric values often exhibit much
narrower ranges. For example, in our study, the
distribution shift metrics fall within the range of 0 to
0.1, while accuracy drops under attacks can span the
whole range in between 0 and 1. By maintaining
the theoretical limits for all metrics, those with higher
variations in values may overshadow those with smaller
variations in the aggregated scores. Consequently,
we recommend adjusting the minimum and maximum
values in accordance with the observable metric ranges
in practical scenarios. However, such adjustments
necessitate a thorough understanding of the behavior of
each metric.

4.3. Aggregation

Regarding our scoring methodology, we employ
equal weights when aggregating metric values to derive
DS, and when combining DS to form the TS. This
approach allows for an initial evaluation of an ML
model’s trustworthiness. However, it is important
to acknowledge the trade-offs existing among metrics
within each dimension, such as competing fairness
definitions or privacy attacks, which could potentially
outweigh one another. In order to highlight particularly
significant risks in a specific use case, while keeping
a broader metric selection, it may be advantageous to
assign specific weights to selected metrics. Similarly,
the TS can assign greater importance to certain
dimensions if they are deemed especially critical for a
particular ML application.

5. Limitations

Our proposed framework has the potential to
enhance the understanding of the trustworthiness of
ML models. However, certain limitations impede
its applicability to other use cases. While our
procedure of normalizing and aggregating metric values
to comprehensive scores is universally applicable, the
choice of metrics is closely tied to the specific use case
and dependent on three key factors, namely the ML task,
model architecture and data type.

Our framework can be applied to other image
classification use cases without any modifications,
provided that the underlying dataset has been labeled
with binary target and sensitive attribute labels. In the
event of multi-class settings, the calculation of fairness
metrics needs to be adjusted. As our framework is
founded on commonly used classification metrics, it
may be necessary to adapt the metrics to specific tasks,
such as object detection and image segmentation.

Regarding the model architecture, our framework is
currently tailored to neural networks. When employing
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other types of ML models, attack-based metrics for
privacy and robustness may become irrelevant, and other
explanation methods may be more suitable. Conversely,
the fairness metrics are independent from the algorithm
used.

Concerning the data type, group fairness metrics
are generally applicable to all data types, with tabular
data being particularly well-suited (Bird et al., 2020).
Alternative ways to measure fairness might become
relevant for NLP, e.g. gender-swapping (Bansal,
2022). Regarding robustness to distribution shifts,
comparing performance on an original versus a shifted
dataset can be applied to other fields, while the
shift simulation might be adapted. Furthermore, the
construction of adversarial examples is feasible for
all data types and tasks, however text or tabular data
might require specific pre-processing techniques due
to their discrete features (W. E. Zhang et al., 2019).
Similarly, privacy-targeting attacks can be applied to
NLP after certain preprocessing, such as calculating
word embeddings (Mahloujifar et al., 2021). Finally,
the general methodology for evaluating explainability is
suitable for all data types. However, different methods
to generate the feature importance values might be
required.

6. Conclusion

In this paper, we used the context of facial
analysis to experimentally explore the design of a
framework for evaluating the trustworthiness of ML
models, that aggregates multiple quantitative metrics
into comprehensive scores. Applying our framework to
four different datasets indicated its utility in revealing
the relationships between aspects of trustworthiness,
and in examining the impact of dataset characteristics.
We also discussed the primary technical challenges in
developing the framework, which include the selection,
normalization, and aggregation of metrics. Regarding
the transferability of our framework, the procedure of
calculating scores is universally applicable, while the
effort of modifying the metric implementation mainly
depends on the ML task, data type and model. Overall,
our results serve as a foundation for future work focused
on refining the framework, deepening the analysis of
the behaviour of selected metrics and the influence
of models and hyperparameters on trustworthiness.
Finally, we aim to expand its scope to a broader range
of applications.
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