RELATIONSHIPS BETWEEN TSUNAMI SIZE AND EARTHQUAKE MAGNITUDE IMPROVED BY FAULT PARAMETERS
Date
2020
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Megathrust earthquakes are the main source of tsunamis. The rupture at the plate interface deforms the seafloor, displacing seawater over a large region. The earthquake magnitude is not the only factor that affects the tsunami amplitude. A tsunami earthquake, which produces a much larger tsunami than what can be inferred from the seismic energy release, exemplifies this phenomenon. This thesis examines relationships between tsunami size and key geophysical attributes such as fault depth, fault dip, fault size, rigidity, and water depth, besides moment magnitude. The parametric study involves four sets of simplified megathrust-ocean models with an elastic planar-fault solution to define the earth surface deformation and a non-hydrostatic model to describe the resulting tsunami. The first set of models contains a flat seafloor to provide a baseline for comparison. The second set includes a flat seafloor abutting a 2° slope, and by varying the fault depth, fault dip, and water depth, explores the contributions from wave shoaling and wave energy anisotropy to peak tsunami amplitude. The third set utilizes the same topography to demonstrate effects of reduced rigidity or fault size for the same seismic moment. The fourth set examines the combined effects of the geophysical parameters as well as their trade-off. The results highlight the importance of depth-dependent fault rigidity and size in describing the two orders of magnitude variability in observed peak tsunami amplitude for given moment magnitude.
Description
Keywords
Ocean engineering, fault depth, fault dip, megathrust earthquake, rigidity, tsunami, wave shoaling
Citation
Extent
74 pages
Format
Geographic Location
Time Period
Related To
Related To (URI)
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.