CAVA: Cognitive Aid for Vulnerability Analysis

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

7377

Ending Page

Alternative Title

Abstract

Becoming a reverse engineer (RE) requires rigorous training and understanding of program structure and functionality, and experts develop heuristic strategies and intuitions from real-world experiences. This paper attempts to capture REs’ strategies and intuitions within a predictive cognitive model and demonstrate the feasibility of assisting novice REs using an intelligent recommender called CAVA (Cognitive Aid for Vulnerability Analysis). CAVA leverages physiological sensors to assess a novice’s cognitive states and provides real-time visual hints when the novice’s attention and engagement diminish. We instrumented Ghidra and conducted pilot experiments with REs. Open-loop experiments with 9 REs confirmed the feasibility of identifying novices from experts using physiological signals, and a pilot closed-loop experiment tested the feasibility of providing visual recommendations to a novice. Despite challenges in recruiting REs, our progress suggests that CAVA is a promising approach to improve novice performance and our understanding of experts’ behavior when performing complex real-world reverse engineering tasks.

Description

Keywords

Cyber Operations, Defense, and Forensics, closed-loop visual aid, cognitive model, software reverse engineering

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.