Barriers to Predictive Analytics Use for Policy Decision-Making Effectiveness in Turbulent Times: A Case Study of Fukushima Nuclear Accident

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Predictive analytics are data-driven software tools that draw on confirmed relationships between variables to predict future outcomes. Hence they may provide government with new analytical capabilities for enhancing policy decision-making effectiveness in turbulent environments. However, predictive analytics system use research is still lacking. Therefore, this study adapts the existing model of strategic decision-making effectiveness to examine government use of predictive analytics in turbulent times and to identify barriers to using information effectively in enhancing policy decision making effectiveness. We use a case study research to address two research questions in the context of the 2011 Fukushima nuclear accident. Our study found varying levels of proactive use of SPEEDI predictive analytics system during the escalating nuclear reactor meltdowns between Japan’s central government agencies and between the central and the state government levels. Using the model, we argue that procedural rationality and political behavior can be used to explain some observed variations.

Description

Keywords

Predictive analytics, analytical capabilities, government decision making effectiveness, evacuation policy

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.