Walk This Way: Footwear Recognition Using Images & Neural Networks
Files
Date
2022-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Footwear prints are one of the most commonly recovered in criminal investigations. They can be used to discover a criminal's identity and to connect various crimes. Nowadays, footwear recognition techniques take time to be processed due to the use of current methods to extract the shoe print layout such as platter castings, gel lifting, and 3D-imaging techniques. Traditional techniques are prone to human error and waste valuable investigative time, which can be a problem for timely investigations. In terms of 3D-imaging techniques, one of the issues is that footwear prints can be blurred or missing, which renders their recognition and comparison inaccurate by completely automated approaches. Hence, this research investigates a footwear recognition model based on camera RGB images of the shoe print taken directly from the investigation site to reduce the time and cost required for the investigative process. First, the model extracts the layout information of the evidence shoe print using known image processing techniques. The layout information is then sent to a hierarchical network of neural networks. Each layer of this network is examined in an attempt to process and recognize footwear features to eliminate and narrow down the possible matches until returning the final result to the investigator.
Description
Keywords
Machine Learning and Cyber Threat Intelligence and Analytics, artificial intelligence, digital forensics, image processing, machine learning, shoe print
Citation
Extent
13 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.