A Comparative Study of Machine Learning Approaches for Anomaly Detection in Industrial Screw Driving Data

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1050

Ending Page

Alternative Title

Abstract

This paper investigates the application of Machine Learning (ML) approaches for anomaly detection in time series data from screw driving operations, a pivotal process in manufacturing. Leveraging a novel, open-access real-world dataset, we explore the efficacy of several unsupervised and supervised ML models. Among unsupervised models, DBSCAN demonstrates the best performance with an accuracy of 96.68% and a Macro F1 score of 90.70%. Within the supervised models, the Random Forest classifier excels, achieving an accuracy of 99.02% and a Macro F1 score of 98.36%. These results not only underscore the potential of ML in boosting manufacturing quality and efficiency, but also highlight the challenges in their practical deployment. This research encourages further investigation and refinement of ML techniques for industrial anomaly detection, thereby contributing to the advancement of resilient, efficient, and sustainable manufacturing processes. The entire analysis, comprising the complete dataset as well as the Python-based scripts are made publicly available via a dedicated repository. This commitment to open science aims to support the practical application and future adaptation of our work to support business decisions in quality management and the manufacturing industry.

Description

Keywords

Data Science and Machine Learning to Support Business Decisions, anomaly detection, screw driving operations, supervised learning, tightening process, unsupervised learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.