Multivariate Stochastic Approximation to Tune Neural Network Hyperparameters for Criticial Infrastructure Communication Device Identification
Date
2018-01-03
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The e-government includes Wireless Personal Area Network (WPAN) enabled internet-to-government pathways. Of interest herein is Z-Wave, an insecure, low-power/cost WPAN technology increasingly used in critical infrastructure. Radio Frequency (RF) Fingerprinting can augment WPAN security by a biometric-like process that computes statistical features from signal responses to 1) develop an authorized device library, 2) develop classifier models and 3) vet claimed identities. For classification, the neural network-based Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is employed. GRLVQI has shown high fidelity in classifying Z-Wave RF Fingerprints; however, GRLVQI has multiple hyperparameters. Prior work optimized GRLVQI via a full factorial experimental design. Herein, optimizing GRLVQI via stochastic approximation, which operates by iterative searching for optimality, is of interest to provide an unconstrained optimization approach to avoid limitations found in full factorial experimental designs. The results provide an improvement in GRLVQI operation and accuracy. The methodology is further generalizable to other problems and algorithms.
Description
Keywords
Cybersecurity and Government, cyber, fingerprinting, neural networks, optimization, physical layer security
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.