A Generic Primary-control Model for Grid-forming Inverters: Towards Interoperable Operation & Control

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper outlines an architectural vision centered around the notion of interoperability to integrate grid-forming inverter-based resources in large-scale grids. With the underlying principle of interoperability guiding developments, we focus on modeling the characteristics of droop, virtual synchronous machine, and virtual oscillator controls. Emphasis is placed on these three controllers since they are leading grid-forming control candidates and are likely to be commonplace as primary-control schemes in future systems. We show that these controllers can each be considered as instantiations of a more generic model and that all these controllers exhibit similar droop-like relations between pertinent terminal variables in steady state. This commonality between controllers gives interoperability among them such that automatic synchronization, power sharing, and voltage regulation can be achieved. Simulation results validate the models and demonstrate how the steady-state droop characteristics of these control methods can be aligned with the aid of the developed modeling paradigm.

Description

Keywords

Distributed, Renewable, and Mobile Resources, control, grid-forming inverters, interoperability, modeling, primary control

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.