Growth and applications of carbon nanotube-based nanosponge sheets

Date
2012-12
Authors
Stein, Benjamin Emmanuel
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2012]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Recently, while trying to replicate research results from Gui et al. [1], via liquid-injection chemical vapor deposition, an unexpected result was recorded-instead of growing a carbon nanotube sponge on the sample slide as expected, a thin, paper-like film was discovered on the furnace sidewalls. This material was found to have a flexibility and thickness comparable to Teflon tape, capable of being easily handled without tearing. Later SEM analysis showed that this new material was indeed comprised entirely of carbon nanotubes, but with a higher degree of long-range order, flexibility and toughness than the structures reported by Gui et al. indicating that this might be a new material type entirely, and hence is called NanoSponge Sheets (NSSs). After repeating the conditions responsible for the initial discovery, it was determined that the major influencing factor was the addition of xylene to the precursor mix. Further experimentation yielded a functional set of growth parameters, which are still being further refined. Currently, the growth process is being developed to grow larger sizes of the NSSs for further applications testing. The growth process is based on liquid-injection chemical vapor deposition, with a 2" diameter quartz furnace tube. A 6" diameter furnace is currently under development for use in other projects, but can be easily refitted for growing larger NSS samples for larger-scale applications and testing. This "Nano Sponge Sheet" or NSS material has already displayed numerous interesting properties which may make it useful for a range of applications, including but not limited to: supercapacitors, energy storage, water desalination filters, composites/armor, EMF shielding, photovoltaics, and heat sinks.
Description
M.S. University of Hawaii at Manoa 2012.
Includes bibliographical references.
Keywords
nanosponge sheets, carbon nanotubes
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Mechanical Engineering.
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.