Petrology of enstatite chondrites and anomalous enstatite achondrites

dc.contributor.author Van Niekerk, Deon
dc.date.accessioned 2016-02-19T22:33:53Z
dc.date.available 2016-02-19T22:33:53Z
dc.date.issued 2012-12
dc.description Ph.D. University of Hawaii at Manoa 2012.
dc.description Includes bibliographical references.
dc.description.abstract Chondrites are meteorites that represent unmelted portions of asteroids. The enstatite chondrites are one class of chondrites. They consist of reduced mineral assemblages that formed under low oxygen fugacity in the solar nebula, prior to accretion into asteroids. There are two groups of enstatite chondrites--EH and EL. I studied EL3 meteorites, which are understood to be unmetamorphosed and thus to only preserve primitive nebular products. I show in a petrographic study that the EL3s are in fact melt--breccias in which impact-melting produced new mineral assemblages and textures in portions of the host chondrites, after accretion. I document metaland sulfide assemblages that are intergrown with silicate minerals (which are often euhedral), and occur outside chondrules; these assemblages probably represent impact-melting products, and are different from those in EH3 chondrites that probably represent nebular products. In situ siderophile trace element compositions of the metal in EL3s, obtained by laser ablation inductively coupled plasma mass spectrometry, are consistent with an impact-melting hypothesis. The trace element concentrations show no clear volatility trend, and are thus probably not the result of volatile-driven petrogenetic processes that operated in the solar nebula. Trace element modeling suggests that the character of the trace element patterns together with deviations from the mean bulk EL metal pattern is consistent with metal that crystallized in a coexisting liquid-solid metal system in which dissolved carbon influenced element partitioning. I also conducted a petrographic and mineral-chemistry study of several anomalous enstatite meteorites. These have igneous textures, but unfractionated mineralogy similar to unmelted chondrites. I show that with the exception of one, the meteorites are related to each other, and probably formed by crystallization from an impact melt instead of metamorphism through the decay of short lived radionuclides. The broad importance of these studies lies in documenting the petrology of extraterrestrial materials that reveal the geological history of the young solar system prior to the existence of planets. Furthermore, they serve to identify which mineral assemblages record nebular processes and which record processes on asteroids, so that future studies may select the correct material to address particular questions.
dc.identifier.uri http://hdl.handle.net/10125/100797
dc.language.iso eng
dc.publisher [Honolulu] : [University of Hawaii at Manoa], [December 2012]
dc.relation Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Geology and Geophysics.
dc.subject enstatite meteorites
dc.subject enstatite chondrites
dc.subject petrology
dc.subject anomalous enstatite achondrites
dc.title Petrology of enstatite chondrites and anomalous enstatite achondrites
dc.type Thesis
dc.type.dcmi Text
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Van Niekerk_Deon_r.pdf
Size:
52.85 MB
Format:
Adobe Portable Document Format
Description:
Version for non-UH users. Copying/Printing is not permitted
No Thumbnail Available
Name:
Van Niekerk_Deon_uh.pdf
Size:
52.84 MB
Format:
Adobe Portable Document Format
Description:
Version for UH users