A Probabilistic Perspective of Human-Machine Interaction

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Human-machine interaction (HMI) has become an essential part of the daily routine in organizations. Although the machines are designed with state-of-the-art Artificial Intelligence applications, they are limited in their ability to mimic human behavior. The human-human interaction occurs between two or more humans; when a machine replaces a human, the interaction dynamics are not the same. The results indicate that a machine that interacts with a human can increase the mental uncertainty that a human experiences. Developments in decision sciences indicate that using quantum probability theory (QPT) improves the understanding of human decision-making than merely using classical probability theory (CPT). In this paper, we examine the HMI from a QPT perspective. Applying QPT to studying HMI for decision-making shows improvement in understanding the decision process when interacting with machines because it provides insights into the mental uncertainty of a human that is not apparent in CPT.

Description

Keywords

Cyber Systems: Their Science, Engineering, and Security, human, interaction, machine, probability

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.