Hierarchical Control for Self-adaptive IoT Systems: A Constraint Programming-Based Adaptation Approach

Date
2022-01-04
Authors
Tourchi Moghaddam, Mahyar
Rutten, Eric
Giraud, Guillaume
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The self-adaptation control of Internet of Things (IoT) systems ought to tackle uncertainties in the dynamic environment (application level), as well as the dynamic computation infrastructure (architecture level). While the control of those two levels is generally separated, they should coordinate to guarantee functionality and quality. This paper proposes a conceptual model for the separation of concerns in controlling the environment and infrastructure events. The approach is applied on a real case: Melle-Longchamp area's smart power transmission network (in France). A hierarchical architecture with a control mechanism formalized with constraint programming (CP) is modeled. The control system assesses the reconfigurations that enhance the quality of service (QoS) while considering the internal and external limitations. The CP considers the desired environment control modes and assesses their feasibility by computing the response time and availability using a Netflow algorithm. The outcomes of this research supported design decisions and provided architectural reconfiguration solutions to the French Power Transmission Company (RTE).
Description
Keywords
Cyber Systems: Their Science, Engineering, and Security, constraint programming, performance, self-adaptation, smart grid, software architecture
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.