Enhancing Exploratory Learning through Exploratory Search with the Emergence of Large Language Models

Date

2025-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

44

Ending Page

Alternative Title

Abstract

In the information era, how learners find, evaluate, and effectively use information has become a challenging issue, especially with the added complexity of large language models (LLMs) that have further confused learners in their information retrieval and search activities. This study attempts to unpack this complexity by combining exploratory search strategies with the theories of exploratory learning to form a new theoretical model of exploratory learning from the perspective of students' learning. Our work adapts Kolb's learning model by incorporating high-frequency exploration and feedback loops, aiming to promote deep cognitive and higher-order cognitive skill development in students. Additionally, this paper discusses and suggests how advanced LLMs integrated into information retrieval and information theory can support students in their exploratory searches, contributing theoretically to promoting student-computer interaction and supporting their learning journeys in the new era with LLMs.

Description

Keywords

Advances in Teaching and Learning Technologies, exploratory learning, exploratory search, information retrieval, large language models, learning theory.

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 58th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.