A Digital Twin City Model for Age-Friendly Communities: Capturing Environmental Distress from Multimodal Sensory Data

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

As the worldwide population is aging, the demands of aging-in-place are also increasing and require smarter and more connected cities to keep mobility independence of older adults. However, today’s aging built environment often poses great environmental demands to older adults’ mobility and causes their distresses. To better understand and help mitigating older adults’ distress in their daily trips, this paper proposes constructing the digital twin city (DTC) model that integrates multimodal data (i.e., physiological sensing, visual sensing) on environmental demands in urban communities, so that such environmental demands can be considered in mobility planning of older adults. Specifically, this paper examines how data acquired from various modalities (i.e., electrodermal activity, gait patterns, visual sensing) can portray environmental demands associated with older adults’ mobility. In addition, it discusses the challenges and opportunities of multimodal data fusion in capturing environmental distresses in urban communities.

Description

Keywords

Smart City Digital Twins, aging-in-place, built environment assessment, digital twin city, physiological signals, visual sensing

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.