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Abstract 
 

As the worldwide population is aging, the demands 
of aging-in-place are also increasing and require 
smarter and more connected cities to keep mobility 
independence of older adults. However, today’s aging 
built environment often poses great environmental 
demands to older adults’ mobility and causes their 
distresses. To better understand and help mitigating 
older adults’ distress in their daily trips, this paper 
proposes constructing the digital twin city (DTC) 
model that integrates multimodal data (i.e., 
physiological sensing, visual sensing) on 
environmental demands in urban communities, so that 
such environmental demands can be considered in 
mobility planning of older adults. Specifically, this 
paper examines how data acquired from various 
modalities (i.e., electrodermal activity, gait patterns, 
visual sensing) can portray environmental demands 
associated with older adults’ mobility. In addition, it 
discusses the challenges and opportunities of 
multimodal data fusion in capturing environmental 
distresses in urban communities.  
 
1. Introduction  
 

Population aging is a global phenomenon. There 
will be more elderly people than young children in the 
global population in 2035, and older adults in the US 
will be over 20% of the entire US population in 2050 
[1]. A majority of these elderly people want to live in 
their present communities as long as possible [2]. Such 
aging-in-place goals enable older adults to maintain 
their independence, autonomy, and connection to 
social support. It offers significant social and 
economic advantages (e.g., a low rate of clinical 
depression and obesity) at the individual and societal 
levels [3]. These goals demand smarter and more 
connected cities for their independent mobility and 
healthy aging. 

However, there is a growing concern about the 
inclusiveness and quality of urban built environment 

beyond the home; traditional urban planning/design 
practices do not adequately consider the special needs 
of older adults experiencing substantial physical and 
cognitive limitations [4], and overall maintenance 
conditions of America’s aging urban infrastructure 
(e.g., streets, transit systems, buildings) continue to 
worsen [5]. Such an urban built environment often 
presents great physical and/or cognitive demands to 
older adults’ mobility and causes older adults’ 
physical and emotional distress, thereby inhibiting 
their mobility. Therefore, assessing urban built 
environment from older adults’ perspectives would be 
the critical first step in fostering age-friendly 
communities that protect mobility, well-being, and 
health of older adults. 

One promising approach is to exploit new sources 
of urban data emerging from technological, social, and 
business innovations. For example, wearable sensing 
data crowdsourced from urban residents’ wearable 
devices could provide direct observations on how 
residents feel and respond to the environmental 
demand of urban communities [6]. In addition, visual 
sensing data on urban built environment (e.g., Google 
Street view, crowdsourced photos) could contain key 
information on environmental stressors in urban 
communities. Such multimodal data on environmental 
distress associated with older adults’ mobility can be 
then integrated into the Digital Twin City (DTC) 
model, in order to provide spatiotemporal patterns of 
environmental distress associated with older adults’ 
mobility. In this context, this paper aims to examine 
how data acquired from diverse modalities can be 
analyzed to represent environmental demands 
associated with older adults’ mobility and can be 
integrated into a virtual city model. In addition, this 
paper will discuss challenges and opportunities in 
fusing such multimodal data, by using experimental 
data collected in the Bryan downtown, Texas. 
 
2. Research background  
 
2.1 Mobility of older adults 
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Older adults’ mobility plays an important role in 
their physical well-being, health behaviors, mental 
wellness, and satisfaction, and has an impact on public 
health [7]. Many studies indicate that older adults’ 
mobility is closely related to their physical activity [7], 
social engagement [8], mental disorders [9], nutrition 
(e.g., consumption of fruit and vegetables) [10], and 
access to medical services [11]. Protecting and 
enhancing older adults’ mobility is, therefore, the 
critical first step to promote the quality of their lives.  

The mobility of an older adult is mainly affected 
by his/her physical capacity and surrounding 
environmental conditions including distance, ambient 
conditions (e.g., weather conditions), terrain 
characteristics (e.g., slope, stairs, and uneven 
surfaces), physical disorders (e.g., vandalized building 
and litter in the streets), objects or people density in 
walking path, and speeding cars [3, 5, 6, 7]. Various 
attempts have been made to assess environmental 
demands associated with older adults’ mobility. Most 
of them rely on surveys and interviews from actual 
users (i.e., older adults) and/or trained inspectors [12]. 
However, opinion surveys and visual audits are not 
free from subjectivity concerns (i.e., inter-rater 
reliability issues) and cannot provide continuous 
assessment for urban communities where many 
dynamic individual factors (e.g., time of day, traffic, 
weather, maintenance conditions) interplay  [13]. 
Therefore, a novel breakthrough by leveraging new 
sources of urban data in understanding the interaction 
between older adults and surrounding urban built 
environment is necessary to enable the continuous 
assessment and create smarter and more connected 
cities for age-friendly communities. 
 
2.2 Digital twin city (DTC) 
 

The term ‘Digital Twin’ can be defined as a 
dynamic digital representation which mirrors and 
simulates a physical system to help organize and share 
data for informing better decision-making in the 
system [14]. To facilitate decision-making regarding 
the complex systems of urban built environments, 
many cities have created and leveraged a DTC model 
based on real-time data from the diverse Internet of 
Things (IoT) sensors to bridge the gap between real 
and virtual world [15]. For example, the ‘Virtual 
Rennes’ project by the city of Rennes has created the 
data-rich DTC model to support urban planning and 
management in the context of the growing population, 
energy consumption, and environmental issues [16]. 

In particular, for achieving safe and healthy urban 
built environment, ‘Virtual Singapore’ project has 
created the DTC model informed by IoT sensor-based 
dynamic data to analyze noise and pollution level in 

real-time. Similarly, the DTC models of Singapore 
have been used by Singapore’s security forces to 
simulate terrorists’ attack at a sports stadium in order 
to mitigate potential risk [17]. The DTC model could 
be combined with healthcare systems to monitor, 
diagnose, and predict the health of older adults by 
integrating the medical physical and virtual spaces; it 
can provide diverse application scenarios such as real-
time supervision, resource optimization and accurate 
crisis warning systems [18]. As such, the real-time 
data obtained from monitoring sensors in cities has 
brought significant potential to improve data-driven 
decision-making for achieving safe and healthy urban 
built environments.  
 
2.3 Urban sensing data and environmental distress 
 

New sources of urban data—including 
infrastructure-based sensors [19], user-generated data 
[20], and administrative data [21]—are emerging from 
technological, social, institutional, and business 
innovations [22]. These new datasets have stimulated 
empirical data-driven research towards bottom-up 
sensing of the city [23]. Evaluating urban 
environments using new urban data to promote 
community residents’ quality of life is one of the areas. 
Extensive efforts have already been made using 
passively collected location data from a user’s mobile 
phone [24], crowdsourced self-reports on 
environmental issues [25], administrative data (e.g., 
New York City’s 311 complaint data) [21], and video 
and image data (e.g., Google Street view) [26]. 

One of the promising data sources to better 
understand human experience in the urban built 
environment would be physiological responses (e.g., 
electrodermal activity (EDA), gait patterns, blood 
volume pulse) captured from wearable devices of 
older adults. Such physiological responses could 
provide information regarding how individuals feel 
and respond to environmental demands, including 
fight-or-flight responses to threatening stimuli. 
Chrisinger and King [25], for example, attempted to 
capture the stress experiences of pedestrians in urban 
built environments using EDA signals. This research 
investigated the utility of physiological signals by 
examining the relationships between subjective 
evaluation forms (e.g., walkability survey) and 
physiological signals [26]. Duchowny et al. [27] 
examines the usefulness of exploiting gait speed and 
stride length to identify the influence of an 
environmental demands for mobility. They found 
variability in accordance with physiological responses 
in high-demand environments (e.g., absence of traffic 
signals and sidewalk defects). Also, our previous study 
[6] highlighted that collective levels of gait stability 
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and relative heart rates captured from pedestrians in 
naturalistic ambulatory settings can be indicative of 
adverse built environmental features that harm 
neighborhood walkability.  

There have been few recent studies on vision-
based methods to measure urban perception from 
images for analyzing changes in the physical 
appearances in scenes [28,29]. These studies built on 
the prior works dedicated to analyzing the aesthetic 
aspects of visual data using generic image features 
such as color, texture, and SIFT [30-32]. To identify 
the correlation between visual features and the 
perceived safety of a Google Street View image, Naik 
et al. [29] proposed a scene understanding algorithm 
to rate a perceived safety score, called Streetscore, 
using training data collected from an online survey 
with the contributions of participants. 

While these studies highlight opportunities to 
leverage new urban data to capture environmental 
distress, it has not been fully examined how such data 
can identify environmental distress to a specific 
population (e.g., older adults). More importantly, 
research into whether and how the fusion of 
multimodal data on urban communities generates 
added value in capturing environmental distress to 
older adults is uncharted territory. 

 
 

3. Capturing environmental distress from 
urban sensing data 
 

This section discusses a methodology to capture 
distress (or perceptual distress) from multimodal data 
sources. In particular, this study focuses on (1) 
physiological response data captured from older 
adults’ wearable devices, including EDA and gait 
patterns, and (2) visual sensing data available from 
various sources (e.g., crowdsourced, Google Street 
view). 
 
3.1 Capturing environmental distress from 
wearable sensing data 
 

Although pedestrian’s physiological signals have a 
great potential to understand the effect of the urban 
built environment, it cannot be directly used in raw 
data level due to many technical and technological 
challenges (e.g., motion artifacts and electrode contact 
noise) [33-36]. Thus, this section will describe an 
alternative data processing method to effectively 
capture environmental distress from physiological 
signals. Additionally, the data processing way was 
introduced in the author’s previous research in detail 
[37]. The proposed method includes (1) physiological 

signal segmentation; (2) extraction of physiological 
features; (3) calculation of physiological saliency cue 
(PSC); and (4) PSC aggregation across individuals.  

Segmentation is the first step to extract sub-
features from physiological signals. Using fixed-
length segmentation might not be efficient because 
signal changes might occur within the analysis 
segment [33]. Specifically, different physiological 
signals have different latencies, and each 
environmental distress has different magnitude and 
duration of physiological responses [33]. To address 
these challenges, a non-fixed-length approach is 
needed, so physiological signals are divided by 
segments in a data-driven way. Specifically, a bottom-
up segmentation is used. It starts with identifying 
many possible change points and continuously 
removes less significant ones [38]. The entire signal is 
partitioned into smaller sub-signals, and then near 
segments are successively combined by computing 
similarities between segments. Fig. 1 indicates an 
example of the bottom-up segmentation of the EDA 
signal captured in naturalistic ambulatory settings. It 
shows the usefulness of bottom-up segmentation 
which captures the signal’s appropriate change points 
to determine distinct segments. The 9 distinct parts 
were partitioned in the EDA signal using bottom-up 
segmentation. Each part is visually different from their 
near neighbors. For example, the first segment in Fig. 
1 has low EDA signal values compared to the higher 
EDA signal values in the second segment. Thus, the 
bottom-up segmentation was used for both EDA and 
gait patterns. 
 

 
Figure 1. An example of bottom-up 

segmentation on Electrodermal activity 
 

Secondly, features from each physiological signal 
(i.e. EDA, gait patterns) were extracted within each 
segment which is identified by bottom-up 
segmentation. EDA’s features include average skin 
conductance response (SCR) amplitude, SCR 
frequency, and mean skin conductance levels (SCL) 
which are commonly used to portrait emotional 
arousal [39].  Mean SCL is measured as the mean level 
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of the EDA signal [39]. Mean SCR amplitude 
calculates the SCRs’ mean amplitude in the time 
window, and SCR frequency is the number of SCRs 
partitioned by the length of the time segment [39]. To 
assess gait patterns, spatiotemporal stride time (ST) is 
used as a feature. ST is the time span for one heel-
strike event and is widely used in ambulatory gait 
analysis [40]. Specifically, ST is calculated by 
determining the standard deviation in each segment’s 
gait cycle duration to identify the intensity of the 
stride-to-stride fluctuations [40]. 

Thirdly, ‘Physiological Salience Cue’ (PSC) was 
proposed and used to calculate the distinctiveness of 
one segment in compared to others. The PSC 
calculation is motivated by an image’s contrast 
calculation in the technique of computer vision [41]. 
The PSC of segment 𝑗 for participant 𝑖 is described by 
the signal comparison between all other segments of 
participant 𝑖 as follows: 
 

                           (1) 
 
where u  is physiological for segment 𝑗, 𝑇   is the time 
duration of the entire signal for 𝑖 (𝑖=1,…,N), 𝑡   is the 
time duration of segment 𝑗, and a is the number of 
segments for participant 𝑖. Our previous research 
highlights the detailed operation process of the PSC 
equation [37, 42]. The calculated PSC values are 
normalized in each participant, and then PSC values 
are computed and aggregated to extract each sub-
feature. The aggregation of EDA PSC values is 
presented by equation 2, and PSC values for gait 
patterns will be denoted as 𝑐  
 

                  (2) 
 

Lastly, since the physiological response of an 
individual can be affected by their momentary actions 
and/or physiological reactivity, collective analysis of 
physiological signals across many individuals is 
important to reliably capture environmental distress in 
each location. For that, histograms of the PSC values 
are composed for all participants to afford summative 
information. The diverse histograms indicate different 
concentration patterns. Specifically, a certain location 
with high PSC values illustrates a highly right-skewed 
distribution with negative skewness (See Fig. 2). Fig. 
2-b indicates that many individuals presented high 
PSC values in the location, so its histogram shows 
skewed towards the right. Therefore, it has a higher 
negative skewness value (0.51) then Fig. 2a (-1.58). 

With these backgrounds, negative skewness is 
exploited to compute collective PSC values across 
multiple subjects in one location.  
 

 
Figure 2. Histogram showing the distribution 

of physiological saliency cues across all 
participants; (a) negative skewness value in 
collective EDA PSC equal to - 1.58; and (b) a 
negative skewness value in collective EDA 

PSC equal to + 0.51 
 
3.2 Assessing perceptual distress from visual 
sensing data 
 

To assess the human perception on scenes that may 
cause physical and emotional distress, images are 
ranked through a pairwise comparison. In this paper, 
participants compare a pair of street-level images to 
determine which scene looks more stressful or 
uncomfortable to walk. The outcomes of the pairwise 
comparison are then converted into a ranked score for 
each image through the Bayesian graphical model 
[43]. The ranked score does not have a universal unit 
as every entity is given a unitless number, and thus that 
is only effective to compare with others relatively, not 
deterministically quantify the value [44]. For example, 
the Microsoft Trueskill used this concept for rating 
players competing in online games [45, 46] In this 
paper, building on the Bayesian inference, visual 
sensing data (i.e., image) is the entity to assess the rank 
compared with others for understanding the human 
perception on given scenes in terms of physical and 
emotional distress, and ultimately predicting that of 
unexplored paths. In order to rank images through 
pairwise comparison matches, the visual appearance 
of streetscapes related with a behavior and health of 
pedestrians can be collected by crowdsourcing in large 
city scale [28, 29]. Among diverse matches such as 
Free-for-All and team games with the different 
number of players, our experiments were conducted 
on 1 vs 1 match (i.e., pairwise comparison). Thus, the 
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algorithm was able to be simplified based on the 
relationship between two-players. 

To cope with the uncertainty in the pairwise 
comparison, the score of each image is modeled in the 
form of a Gaussian distribution (i.e., a normal 
distribution) composed of mean μ (i.e., peak point) and 
standard deviation σ rather than a single fixed score 
for each image. In this paper, μ represents the average 
score of the image; σ represents the degree of 
uncertainty in the image score. Since the gaussian 
distribution is characterized that 99.7% of the data are 
within three times of σ, it was assumed that the initial 
μ is three times greater than the initial σ in the ranking 
system. During multiple two-image matches, μ and σ 
value are iteratively updated: σ value is going to keep 
lower in conducting every pairwise comparison; the μ 
of selected image (the winner) is increased, and the μ 
of not-selected image (the loser) is decreased at every 
match. Once the pairwise comparison between image 
A and B is finished, the μ, σ is updated building on 
[45], for example, in which A wins against B: 
 

μ ← μ +
σ

𝑐
∙ 𝑣

μ − μ

𝑐
,
𝜖

𝑐
             (3) 

μ ← μ −
σ

𝑐
∙ 𝑣

μ − μ

𝑐
,
𝜖

𝑐
             (4) 

𝑐 = 2𝛽 + σ + σ                      (5) 
 
Where μ  is the mean value of selected image, μ  is 
the mean value of not-selected image, σ  is the 
standard deviation of selected image, σ  is the 
standard deviation of not-selected image, 𝛽  is the 
uncertainty due to the performance variation, 𝜖 is the 
draw margin. The configurable constant β denotes an 
uncertainty due to the performance variation, which 
indicates that 𝛽  is the additional score above other 
images to identify an 80% probability of win against 
the others [43]. ε is an empirically estimated value 
representing the size of draw margin which depends 
on the probability of draw obtained from empirical 
tests. The draw margin is a range where the 
performance of images is assumed to be equivalent 
even though their values are slightly different. By 
equation (3) and (4), every image has its own mean 
value based on the outcome of the pairwise 
comparison. Accordingly, the standard deviation of 
each image is changed as follows: 
 

σ ← σ ∙ 1 −
σ

𝑐
∙ 𝑤  

μ − μ

𝑐
,
𝜖

𝑐
        (6) 

σ ← σ ∙ 1 −
σ

𝑐
∙ 𝑤  

μ − μ

𝑐
,
𝜖

𝑐
        (7) 

 
Here, the function 𝑣(𝜃) and 𝑤(𝜃) are defined by the 
Normal distribution function 𝑁(𝜃)  and Cumulative 
distribution function Ф(𝜃). 
 
4. Integrating environmental distress into 
digital twin city: case study  
 

Environmental distress captured from multimodal 
data sources can be integrated into a DTC model, so 
that older adults consider such environmental demand 
in their mobility planning. A case study was conducted 
to demonstrate the proposed approach to capture 
environmental distress and integrate into a DTC 
model.  
 
4.1 Experiment and data collection 
 

Field experiments were performed in the Bryan 
downtown in Texas to collect data in ambulatory 
settings. The experiment was performed from June 1st 
to 2, 2019 between 8 am to 11 am, and the average 
temperature was 82.99 Fahrenheit (28.33 Celsius). 
Nine older adults (over 65 years old) were recruited, 
and EDA and IMU data from the participants were 
collected while they walked on the pre-defined path 
with the preferred walking speeds. Wristband-type 
sensors (Empatica E4) and commercial IMUs (Opal, 
APDM Inc.) were used for data collection.  In addition, 
Global Positioning System (GPS) data was collected 
by a smartphone across all participants. EDA and IMU 
data were sampled at the 4Hz, 125Hz, respectively, 
and were coordinated with GPS. The Bateaman low-
pass filter of 24 sample lengths was used to smooth the 
EDA signal, and Butterworth low-pass filter with a 
cut-off 4Hz was used to remove high-frequency noise 
in the IMU data. 

The total distance of the experiment was 1,322.88 
ft (403.21 m). Fig. 3 provides visual evidence of 
terrain rendering of the experiment.  In order to 
recognize the correlation between (1) distress 
continually captured from physiological responses 
during the experiment and (2) perceptual distress 
sparsely measured from visual sensing data (30 
images) at a few specific locations, the entire walking 
path to experiment was divided into 18 POIs 
(segments) of equal length. Thus, some POIs may 
contain multiple images; an image which has the 
lowest score among images was selected. All POIs 
were used to align participants’ PSC values in one POI 
and image scores. Therefore, these POIs which 
indicate physical locations are different from the 
segments by bottom up segmentation. 
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Several environmental stressors were identified by 
trained inspectors’ assessment and the interviews of 
participants and included: partially broken wall (POI 
5), dumpster (POI 6 and 16), uneven sidewalk (POI 8) 
(d) dead animal (POI 11), (e) blocked sidewalk by a 
car (POI 13), and (f) dead branches and leaves 
overhanging the sidewalk (POI 14). 
 

 
Figure 3. Terrain rendering and 

environmental distress; (a) partially broken 
wall, (b) dumpster, (c) uneven sidewalk, (d) 

dead animals, (e) blocked sidewalk by a car, 
and (f) dead branches and leaves 

overhanging the sidewalk   
 

While conducting field experiments to collect 
EDA and IMU data, a total of 18 geocoded photos 
were collected along the pre-defined path by using a 
smartphone (Samsung Galaxy J7). For the pairwise 
comparison experiments of the collected images, eight 
participants in 20s to 30s who did not participate in 
field experiments were instructed to be aware of the 
question: “which place looks more stressful or 
uncomfortable to walk?”.  To converge the image 
score for ranking photos, the participants conducted 
totally 1740 pairwise comparisons including all 
possible pairs. Each participant did 217 or 218 
pairwise comparisons respectively to converge the 
image score for understanding a level of perceptual 
distress of each image. The computation time to 
determine the rank was 0.739s on a computer with the 
configuration of the Intel i7-8750H CPU and the GTX 
1070 8GB GPU. In the proposed approach, the latest 
score of each image will be only ranked so that the old 
one will be replaced with the updated one. Here, high 
rank of an image indicates that the scene looks safe 
and comfortable to walk. 

 
4.2 Assessment results of environmental distress 
using physiological signals and visual sensing data 
 

PSC values of EDA and gait patterns were 
calculated using physiological sensing data. Fig. 4 
shows raw physiological signals and PSC values of 
one subject. As shown in Fig. 4a, the bottom-up 
segmentation effectively captures the change points of 
EDA signals, and the resulting PSC values portrait the 
prominent local patterns. Specifically, the locations 
which present prominent PSC values include many 
environmental stressors, such as dumpster (112 to 125 
seconds), uneven sidewalk (140 to 150 seconds), and 
blocked sidewalk by a car (197 to 208 seconds).  With 
respect to gait patterns, PSC values clearly portray 
distinct patterns around gait cycles 1–118 and 150 to 
200, as shown in Fig. 4b. These locations coincide 
with the POIs containing dead animals, blocked 
sidewalk by a car, and dead branches and leaves 
overhanging the sidewalk. 

 

 
Figure 4. Comparison graph of raw 

physiological signal and physiological 
saliency cues; (a) EDA, (b) gait patterns 

 
In addition, perceptual distress of photos taken in 

the walking path was measured through the pairwise 
comparisons, as shown in Fig. 5a. In our experiment 
as shown in Fig. 5b, the pairwise comparisons were 
conducted by the eight participants described in 
section 4.1; the μ of each image was eventually 
converged around 80 comparisons per image 
approximately.  

PSC values of each segment and ranks of visual 
sensing data were mapped to POIs using GPS 
coordinates, and PSC values of EDA and gait patterns 
across all the subjects were aggregated in each POI 
using the skewness measure. Fig. 6a and 6b indicates 
that collective PSC values of EDA and gait patterns 
are correlated with the locations where various 
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environmental stressors exist. For example, high PSC 
values of EDA are found in the locations with 
dumpsters (POI 6), blocked sidewalk by a car (POI 
13), and dead branches and leaves overhanging the 
sidewalk (POI 14), and dead branches and leaves 
overhanging the sidewalk (POI 14), and collective 
PSC values of gait patterns (see Fig. 6b) also present 
high skewness values in several POIs with broken wall 
(POI 5), uneven sidewalk (POI 8), and dead branches 
and leaves overhanging the sidewalk (POI 14).  

 

 
Figure 5. The pairwise image comparisons 
for ranking score using Bayesian graphical 

model; (a) an example of pairwise 
comparison of scenes, (b) results of pairwise 

comparisons and convergence to a 
consistent score after 80 clicks in our 

experiments. 
  

Perceptual distresses captured from visual sensing 
data are also correlated with the locations having 
environmental stressors, including uneven sidewalk 
(POI 8), dead animal (POI 11), blocked sidewalk by a 
car (POI 13), dead branches and leaves overhanging 
the sidewalk (POI 14), and dumpster (POI 16).  

 
4.3 Physiological signals and visual sensing data in 
3D virtual city model 
 

Visual sensing data and physiological responses 
obtained from experiments were fed into a 3D virtual 
city model as shown in Fig. 6e, toward DTC modeling. 
Objects/areas potentially having a negative impact on 
older adults’ mobility were also imported into the 3D 
virtual city model through the geospatial localization 
building upon [46]. 

Fig. 6e presents objects that may cause physical 
and emotional distress (e.g., dead animal, uneven 

sidewalk, and dumpster) captured by pedestrians in a 
DTC model. In addition, Fig. 6e illustrates the result 
of EDA, gait pattern, and the image pairwise 
comparison at each segment in the DTC model. Using 
GPS coordinates of the center of each POI, (1) 
normalized PSC values of EDA, gait patterns and (2) 
normalized image score were visualized by using 
different color and size of spheres along with the 
predefined path. The size of the spheres represents the 
value of each parameter (i.e., normalized PSC values 
and image scores) at each POI to help users recognize 
the correlation between distress captured from 
physiological responses and perceptual distress 
measured from visual sensing data. By leveraging 
smartphone-based physiological signals and 
crowdsourced visual sensing data reported by 
pedestrians in the future research, DTC model 
effectively enables older adults to plan their daily trips 
based on potential environmental distress in a virtual 
environment. 

 
5. Opportunities and challenges of 
multimodal data fusion 

 
The case study results highlight the opportunities 

to leverage multimodal data in capturing and assessing 
environmental distress associated with older adults’ 
mobility. Firstly, the results indicate that the effects of 
several environmental stressors could be manifested in 
different modality data sources. For example, the 
segments, including blocked sidewalk by a car (POI 
13), and dead branches and leaves overhanging the 
sidewalk (POI 14), created consistent effects on 
feature values from all the three sources (i.e., EDA, 
gait pattern, images). Uneven sidewalk (POI 8) 
contributed to high distress captured from gait patterns 
and perceptual distress on visual sensing data. This 
conforming results from different modalities highlight 
an opportunity of predicting environmental distress on 
the locations where a single modality data exist (e.g., 
only image data is available). 

On the other hand, the results indicate that data 
obtained from multimodalities could be 
complementary, which would add value in capturing 
environmental distress. For example, the highest PSC 
value of EDA was reported at dumpsters (POI 6), 
while those dumpsters didn’t create much effects on 
the PSC value of gait patterns or perceptual distress on 
their image. The odors of dumpsters might have 
impacted the EDA of the participants, while such 
odors were not visible in their images and did not 
trigger the change of gait patterns (e.g., 
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avoidance/hesitation actions). These results highlight 
the potential diversity gained from multimodality. 
Such diversity potentially enhances the overall 
performance of capturing stresses and/or the 
development of the personalized model, compared to 
the approach using a single modality [47]. 

However, how to resolve conflicts between 
different modalities still requires further research. For 
example, the image of a dead animal body (POI 11) 
generated the highest perceptual distress, but it did not 
create much effect to PSC values of EDA and gait 
patterns; it was found that most the subjects were not 
able to spot the stressor during their experiments. 
Likewise, data from different modalities may report on 
different aspects of the urban built environment, 
although those data are collected in one location; this 
may be viewed as no commensurability [44], one of 
the key challenges in data fusion. Also, there is still a 
great chance of contradicting results from different 
modalities, even if data from different modalities. 
deliver observations on the same aspect of the built 
environment. Future research would be necessary for 
resolving these issues in leveraging multimodal 
sensory data.   
 
6. Conclusions 
 

A concept of the DTC model that captures and 
integrates environmental distress associated with older 
adults’ mobility is proposed by leveraging multimodal 
data sources data. A case study to demonstrate the 
concept of the DTC for age-friendly communities was 
conducted using the experimental data collected in 
Bryan downtown, Texas. The results highlight that 

data captured from various modalities, including 
physiological sensing data collected from older adults’ 
wearable devices during their daily trips and 
perceptual distress captured from images on as-is 
environmental conditions, could identify 
environmental distress associated with older adults’ 
mobility.  

The applications of the proposed DTC model are 
thus expected to greatly help older adults’ mobility 
planning in a way to identify less-demanding paths 
considering potential environmental distress in a 
spatial dimension. However, further efforts are 
necessary in fusion data obtained from 
multimodalities, in particular resolving contradicting 
results from different modalities. 
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