Exploring Spiking Neural Networks (SNN) for Low Size, Weight, and Power (SWaP) Benefits

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

7561

Ending Page

Alternative Title

Abstract

Size, Weight, and Power (SWaP) concerns are growing as artificial intelligence (AI) use spreads in edge applications. AI algorithms, such as artificial neural networks (ANNs), have revolutionized many fields, e.g. computer vision (CV), but at a large computational/power burden. Biological intelligence is notably more computationally efficient. Neuromorphic edge processors and spiking neural networks (SNNs) aim to follow biology closer with spike-based operations resulting in sparsity and lower-SWaP operations than traditional ANNs with SNNs only “firing/spiking” when needed. Understanding the trade space of SWaP when embracing neuromorphic computing has not been studied heavily. To addresses this, we present a repeatable and scalable apples-to-apples comparison of traditional ANNs and SNNs for edge processing with demonstration on both classical and neuromorphic edge hardware. Results show that SNNs combined with neuromorphic hardware can provide comparable accuracy for CV to ANNs at 1/10th the power.

Description

Keywords

Intelligent Edge Computing in Pervasive Environments, deep learning, edge processing, neural networks, neuromorphics, swap

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.