Graph-controlled Permutation Mixers in QAOA for the Flexible Job-Shop Problem
Files
Date
2024-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
7624
Ending Page
Alternative Title
Abstract
One of the most promising attempts towards solving optimization problems with quantum computers in the noisy intermediate scale era of quantum computing are variational quantum algorithms. The Quantum Alternating Operator Ansatz provides an algorithmic framework for constrained, combinatorial optimization problems. As opposed to the better known standard QAOA protocol, the constraints of the optimization problem are built into the mixing layers of the ansatz circuit, thereby limiting the search to the much smaller Hilbert space of feasible solutions. In this work we develop mixing operators for a wide range of scheduling problems including the flexible job shop problem. These mixing operators are based on a special control scheme defined by a constraint graph model. After describing an explicit construction of those mixing operators, they are proven to be feasibility preserving, as well as exploring the feasible subspace.
Description
Keywords
Quantum Computing Applications, constraint-mixer qaoa, job-shop scheduling, quantum algorithms, quantum computing
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 57th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.