An Empirical Analysis of On-demand Ride-sharing and Traffic Congestion

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

On-demand ride-sharing, as one of the most representative sectors of sharing economy has received a lot of attention and significant debate. Limited conclusive empirical research has been done to investigate the social welfare of such service. In this research, we conduct difference-in-difference analysis to examine the impact of Uber, an on-demand app-based ride sharing service, on urban traffic congestion. We find that after Uber entry, congestion of this area has been reduced significantly. In order to check the robustness of the results, we conduct instrumental variable analysis, additional analysis using alternative measures. Findings of this research will contribute to IS community by enriching the literature of digital infrastructure platforms. Practical insights derived from this research will help inform policy makers and regulators.

Description

Keywords

digital platforms, ride-sharing services, sharing economy, traffic congestion

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.