Elucidating and Rewiring Regulation of Terpenoid Biosynthesis in Yarrowia lipolytica Utilizing Renewable Lipid Feedstocks

Date
2024
Authors
Maruwan, Jessica
Contributor
Advisor
Su, Wei-Wen
Department
Molecular Biosciences and Bioengineering
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Terpenoids are a group of compounds with many important applications and oleaginous yeast Yarrowia lipolytica is a promising host for terpenoid production because of its highly active mevalonate pathway and high acetyl-CoA fluxes in lipid substrate. Moreover, it is generally recognized as safe (GRAS), and can metabolize renewable lipid feedstocks, in addition to common sugar feedstocks. Lipid is an important substrate as it is underutilized or used to produce low-value products. Our research aims to metabolically engineer Y. lipolytica to convert waste lipid feedstock into terpenes, specifically targeting β-carotene production. Two key aspects of metabolic engineering are emphasized: (1) Optimization of the auxin-inducible degron (AID) system for temporal regulation of protein in lipid substrates, and (2) Investigation into the NADPH supply in Y. lipolytica utilizing lipid substrates, especially its impact on β-carotene production. A unique AID conditional protein degradation system was developed, incorporating a CGD degron tag derived from mini-IAA7 inserted in the open loops of GFP, along with the F74A variant of Oryza sativa TIR1 F-box protein (OsTIR1(F74A)), and 5-Adamantyl-IAA as the inducer. Optimization strategies were employed to minimize leaky degradation by fine-tuning the expression level of the OsTIR1(F74A) F-box protein using the POLE1 medium-strength promoter, effectively improving degradation efficiency during the early culture phase. Metabolomic flux analysis and RNA sequencing suggest the significance of the pentosephosphate pathway and mannitol cycle as the main sources of cellular NADPH, an essential cofactor for β-carotene production. While the pentose-phosphate pathway remains important for NADPH and β-carotene production in lipid substrates, the importance of the mannitol cycle becomes prominent when the pentose-phosphate pathway is knocked out or when mannitol is supplemented to the lipid substrate. However, the correlation between NADPH levels and βcarotene production remains unclear, suggesting that other factors besides NADPH alone may influence β-carotene production.
Description
Keywords
Molecular biology, biorefinery, carotenoids, lipid feedstock, metabolic engineering, Yarrowia lipolytica
Citation
Extent
79 pages
Format
Geographic Location
Time Period
Related To
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.