Data Integration and Predictive Analysis System for Disease Prophylaxis

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The goal of the Data Integration and Predictive Analysis System (IPAS) is to enable prediction, analysis, and response management for incidents of infectious diseases. IPAS collects and integrates comprehensive datasets of previous disease incidents and potential influencing factors to facilitate multivariate, predictive analytics of disease patterns, intensity, and timing. IPAS supports comprehensive epidemiological analysis - exploratory spatial and temporal correlation, hypothesis testing, prediction, and intervention analysis. Innovative machine learning and predictive analytical techniques like support vector machines (SVM), decision tree-based random forests, and boosting are used to predict the disease epidemic curves. Predictions are then displayed to stakeholders in a disease situation awareness interface, alongside disease incidents, syndromic and zoonotic details extracted from news sources and medical publications. Data on Influenza Like Illness (ILI) provided by CDC was used to validate the capability of IPAS system, with plans to expand to other illnesses in the future. This paper presents the ILI prediction modeling results as well as IPAS system features.

Description

Keywords

Data integration, predictive analysis, disease prophylaxis, infectious diseases, influenza

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.