Detecting Feature Requests of Third-Party Developers through Machine Learning: A Case Study of the SAP Community

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

950

Ending Page

Alternative Title

Abstract

The elicitation of requirements is central for the development of successful software products. While traditional requirement elicitation techniques such as user interviews are highly labor-intensive, data-driven elicitation techniques promise enhanced scalability through the exploitation of new data sources like app store reviews or social media posts. For enterprise software vendors, requirements elicitation remains challenging because app store reviews are scarce and vendors have no direct access to users. Against this background, we investigate whether enterprise software vendors can elicit requirements from their sponsored developer communities through data-driven techniques. Following the design science methodology, we collected data from the SAP Community and developed a supervised machine learning classifier, which automatically detects feature requests of third-party developers. Based on a manually labeled data set of 1,500 questions, our classifier reached a high accuracy of 0.819. Our findings reveal that supervised machine learning models are an effective means for the identification of feature requests.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, enterprise software, machine learning, online community, platform ecosystem, requirements engineering

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.