Modeling Phishing Decision using Instance Based Learning and Natural Language Processing

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Phishing is the practice of deceiving humans into disclosing sensitive information or inappropriately granting access to a secure system. Unfortunately, there is a severe lack of theoretical models to adequately explain and predict the cognitive dynamics underlying end-user susceptibility to phishing emails. This paper reports findings from an Instance-Based Learning (IBL) model developed to predict human response to emails obtained from a laboratory experiment. Particularly, this work investigates the effectiveness of using established natural language processing methods, such as LSA, GloVe, and BERT, to represent email text within IBL models. We found that using representations that consider contextual meanings assigned by humans could enable IBL agents to predict human response with high accuracy (>80%). In addition, we found that traditional NLP methods that capture semantic meanings in natural language may not be effective at representing how people may encode and recall email messages. We discuss the implications of these findings.

Description

Keywords

Cyber Deception and Cyberpsychology for Defense, cognitive modeling, deception, natural language processing, phishing

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.