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Abstract

Phishing is the practice of deceiving humans
into disclosing sensitive information or inappropriately
granting access to a secure system. Unfortunately, there
is a severe lack of theoretical models to adequately
explain and predict the cognitive dynamics underlying
end-user susceptibility to phishing emails. This paper
reports findings from an Instance-Based Learning
(IBL) model developed to predict human response
to emails obtained from a laboratory experiment.
Particularly, this work investigates the effectiveness of
using established natural language processing methods,
such as LSA, GloVe, and BERT, to represent email text
within IBL models. We found that using representations
that consider contextual meanings assigned by humans
could enable IBL agents to predict human response
with high accuracy (80%). In addition, we found
that traditional NLP methods that capture semantic
meanings in natural language may not be effective at
representing how people may encode and recall email
messages. We discuss the implications of these findings.

Introduction

Although phishing attacks are rampant on the
internet, the likelihood of an individual encountering a
phishing attack on a given day is small. Yet, people
are expected to detect such a rare attack when they do
experience one. Distinguishing phishing emails from
legitimate emails remains a difficult task for a majority
of people because phishing attacks are essentially
deceptive messages that: a) are rare and constantly
evolving; b) use impersonation to resemble truthful
messages; c) applies emotional arguments to influence
recipients; and d) could be tailored to exploit life context
and recent world events [1, 2].

Despite the large body of research on phishing
attacks, there is a lack of models that explain the
key cognitive processes governing end-user response
to phishing attacks. Existing research on phishing

has predominantly focused on: developing solutions
to automatically detect phishing emails [3]; testing
whether people pay attention to essential cues in a
phishing email or website [4]; developing interventions
to aid human attention [5]; and developing training
programs to educate people about the concepts and
strategies related to phishing (e.g.,[6, 7]). Central
to many of the past research is the aspect of human
attention, or the lack thereof [8, 4]. An individual’s
lack of attention towards key indicators, such as
the URL (Universal Resource Locator) of a website,
and sender address in a phishing email, is widely
considered why end-users fall prey to phishing attacks
[4]. However, human attention is intimately linked to
the contents of human memory [9, 10], and there is
a severe lack of models that explain the role of such
cognitive processes (e.g., memory activation dynamics)
on end-user susceptibility to phishing emails. Our
hypothesis is that people make decisions on phishing
messages based on past experiences by activating
pertinent memories of decisions made in response to
similar emails in the past.

To test this hypothesis, we developed a cognitive
model based on Instance-Based Learning Theory (IBLT)
of experiential-based decisions [11]. The IBL cognitive
model was developed in Python (PyIBL [12]). In the
current research, we developed a model to understand
how people may process phishing messages in memory
and to determine the influence of past experience on
end-user decision making. The objective here is to
understand the cognitive processes driving end-user
response to phishing attacks. Such cognitive models
could be potentially used within email applications
(e.g., Microsoft Outlook) to predict how people
may respond to novel phishing samples which could
inform embedded phishing training and phishing risk
assessments. These models, however, may not be useful
for discriminating phishing from legitimate emails.

In the following sections, we first summarize the
laboratory experiment procedure used to collect human
responses to legitimate and phishing emails. Then, we
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describe the methods used for developing a cognitive
model to predict human response to phishing emails in
the laboratory study. Finally, we present the results and
discuss implications.

Email Management Task
To measure end-user susceptibility to spear phishing

messages, we conducted a group experiment in the lab
[13]. Each group in this experiment consisted of four
participants. Among the four players, three players
were randomly assigned the role of an end-user and the
remaining participant in the group was assigned the role
of an attacker.

End-user participants in the experiment were asked
to assume the role of a fictional character during
the experiment. They were presented with a
detailed fictional narrative describing that end-user (e.g.,
fictional name, occupation, location). The end-user
participants were then asked to perform a routine email
management task pretending to be a fictional character
and make decisions on emails on behalf of the character.
Emails included legitimate emails addressed to that
fictional role, promotional emails, mass phishing emails,
and spear-phishing emails targeted to that fictional role.
We randomly selected the names of three people from
the Enron dataset and 70 emails they received [14].
These email messages served the purpose of providing
the necessary context for the end-user in the experiment.
Additionally, promotional and mass phishing emails
were also provided to end-user participants, randomly
chosen from the data sets used in past studies [10,
15]. The study protocols were reviewed and approved
by University of Washington’s Institutional Review
Board(IRB) office.

The end-users in the experiment were simply making
decisions on whether they would respond or not to
any given message presented to them. They were
rewarded based on their performance in the task. For
each email, the end-user participants also responded to
a small survey (see Table 1) about the email content.
The questions in the survey were initially developed and
improved in a previous study [15].

The participant playing the role of an attacker in
the group was given specific goals in the experiment
using the available information to them about the target
end-user. The attacker objective was to steal bank
credentials, work account credentials, and lure the target
to download attachments. These were fake objectives,
and no real harm were caused to any participants. If
the attacker was able to deceive end-user successfully
in an email, i.e., end-user responded to that email than
the attacker earned rewards. The overall goal for the
adversary was to maximize their individual rewards in

Survey Summary
Request for action (Task assigned,
click on a link, download
attachment, etc)

Action

Request for information or opinion
(send a reply message, contact
info,send file, image, etc) Information

Contains status update for an
ongoing project or task Project

Request for a meeting or other
communication with you Meeting

Contains reminder for a meeting,
event, or upcoming deadline Deadline

Spam or marketing or suspicious Spam
Other Other

Table 1: Survey questions presented to end-user during
each trial

the experiment.

Dataset

To model phishing decisions, we leveraged the
dataset generated from the experiment described in
the previous section. This experiment was designed
to understand the various factors involved in the
spear-phishing attack. The dataset from this experiment
contained responses from 84 participants. The dataset
consists of a total of 529 unique emails with 6712
responses. Each participant responded to approximately
80 emails, including benign emails, phishing emails,
and spear phishing emails. For full information about
the study, please refer to this previous publication [13].

Cognitive Model

We developed an end-user cognitive model using an
Instance-Based Learning (IBL) model of binary choices
[16, 17] in python using PyIBL [12]. IBL models
use the formalization of the memory mechanisms
from the adaptive control of thought-rational (ACT-R)
cognitive architecture [18] and the decision process
from Instance-Based Learning Theory (IBLT) [11]. An
instance in the IBL model is a unit of experience,
consisting of the state (attributes of task), the decision
made in the current state, and the utility (the outcome
of choosing an option in the current state). For each
viable decision, the model computes an expected utility
using the blending mechanism. The blended value is
computed by averaging the past outcomes weighted
by the probability of memory retrieval, which depends
on the contextual similarity to past instances. It also
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take into account frequency and recency of the past
experience instances. The decision is made with the
highest expected utility. To calculate blended value Vk,t
for option k at trial t the following equation is used:

Vk,t =

n∑
i=1

Pi,k,t ∗Xi,k,t (1)

WhereXi,k,t represents the outcome of an instance i
for option k at trial t and Pi,k,t is the retrieval probability
of an instance i for option k at trial t. The retrieval
probability of an instance i is the ratio of activation of ith
instance corresponding to the activation of all instances
(1, 2, . . ., n; where n is total number of instances)
created within the option k at trial t. The retrieval
probability is defined as:

Pi,k,t =
eAi,k,t/τ∑n
i=1 e

Ai,k,t/τ
(2)

Here, τ = σ∗
√
2 and τ is a free noise parameter. The

noise parameter (τ ) is used to capture the inaccuracy
of remembering past experiences from memory. Ai,k,t
is the activation of an instance i on option k at trial t.
It represents the linear aggregation of three cognitive
elements: frequency and recency, similarity of an
instance with past experiences, and noise. Based on
the ACT-R theory of cognition [19], the activation
value represents how readily available an instance is in
memory: the higher the activation, the easier and faster
it would be to retrieve such an instance from memory.
The Activation is computed as follows:

Ai,k,t = ln
∑

ti=1..t−1

(t− ti)−d+

MP
∑
k

Sim(vk, ck) + σ ∗ ln
(
1− γi,k,t
γi,k,t

) (3)

The term (ln
∑
ti=1..t−1(t−ti)−d) reflects the power

law of experience and forgetting, ti represents all the
previous trials where the instance i was either created or
its activation was reinforced due to its recurrence. tj is
the time since the jth occurrence of instance i and d is
the decay (default value= 0.5) rate of each occurrence.
The decay parameter accounts the the rate of forgetting
the experienced events: higher the decay, faster the rate
of forgetting of past events, which increase the reliance
on recent events. The activation of an instance can
increase with the frequency and recency of observing
that outcome (i.e., by small differences in t− ti).

MP
∑
k Sim(vk, ck) represent a partial matching

process which reflect the similarity between the
current state (ck) and the instances that are stored
in memory(vk), scaled by a mismatch penalty (set to
2.5). The similarity between numerical slot values are
computed on a linear scale from distinct (0.0) to an exact
match (1.0).

σ ∗ ln
(

1−γi,k,t

γi,k,t

)
represents the Gaussian noise

mechanism for capturing the variability in individual
choices. Where γi,k,t is a random number drawn
uniformly between 0 and 1. The σ i.e. the variance in
the noise term is set to the default ACT-R value of 0.50.

In a related work, Cranford et al. developed
an instance-based learning model to predict end-user
response to phishing emails[9]. LSA (Latent Semantic
Analysis) and Wordnet were used to compute the
semantic similarity between incoming emails and agent
memories. However, using LSA to determine semantic
similarities between two instances was raised as an
important limitation of this work. They theorized
that LSA was not effective at representing how people
process email texts. Therefore, in this work, we
investigate the effect of using deep learning and
attention-inspired natural language processing methods
such as BERT, which has demonstrated impressive
performance in other NLP applications.

Natural Language Processing Methods

We tested three different natural language processing
methods (LSA[20], GloVe[21], and BERT[22]), often
used in natural language understanding tasks, to
represent and calculate the similarity between two
email instances within the IBL model. We compared
the performance of these three methods in predicting
participants’ responses to emails (ham, phishing, and
spear-phishing) in the laboratory study described earlier.
In the following section, we briefly describe each
method and how these three methods were used to
measure similarity between instances in the IBL model.

As a baseline, we used Latent semantic analysis
(LSA). It is a popular bag-of-words approach used
to determine the similarity between two linguistic
items (e.g., documents, emails) based on word
frequencies. In LSA, linguistic items are organized into
a word-frequency or a TF-IDF (term frequency-inverse
document frequency) matrix to specify the number
of times each word in a corpus appears within each
document. Using the singular value decomposition
method, this large dimensional matrix is factorized
to represent the documents in a low dimension space
and determine the latent factors (or topics) that may
describe each document. The similarity between
a pair of documents is calculated using the cosine
distance between the low-dimension vector of latent
factor values of each document. LSA effectively
captures the similarity between documents based on
word frequency that may suit information retrieval
applications. However, they may not represent how
humans process text. For example, two emails from the
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same bank could contain similar words (e.g., account,
withdrawal) and branding but could be communicating
two different things. A human would consider the two
emails dissimilar to each other, but LSA is likely to
consider them semantically similar because they contain
words that belong to a common latent topic of banking.

GloVe or Global Vectors algorithm was introduced
to address some of the limitations in LSA and
other algorithms (e.g., Word2Vec) used for learning
word-level representations [21]. GloVe algorithm is
used to produce a global vector representation of
words based on their co-occurrence in a large corpus
of text data. The algorithm generates a vector
representation for each word in a given corpus, where
words with similar vector representations are considered
semantically similar. For example, let us consider two
words, chase and account related in the banking context.
The global vector representations of these two words are
essentially the ratio of their co-occurrence probabilities
with various probe words. When fine-tuned to the
banking context, the algorithm is likely to generate
similar vector representations for the words chase
and account due to their co-occurrence in a banking
email corpus. The algorithm generates a vector of
fixed dimensions (usually 300) for each word in a
corpus. These are machine-learned representations,
learned by training the algorithm on a large text corpus
to capture global co-occurrence statistics between
words. Using the transfer learning approach, the global
representations can be fine-tuned and applied to learn
representations for words in a smaller dataset, such
as a phishing dataset generated from the experiment
described earlier. Although GloVe is significantly better
at capturing global and contextual similarities between
words, the sequential pattern of language and the context
of a word within a sentence is ignored.

We have used Bi-directional encoder representation
(BERT) as a third approach to represent the email text
within the IBL model [11]. Unlike LSA and GloVe,
which represent natural language at a word level, BERT
can be used to make inferences at a sentence level,
allowing BERT and other related methods to achieve
state-of-the-art performance on various natural language
understanding tasks [22]. BERT is a bi-directional
model because the algorithm considers the full context
of a word in a sentence by processing words that
come before and after it. The algorithm achieves
bi-directional processing by considering all words
in a sentence in parallel rather than one-by-one in
a sequence, using a transformer-based self-attention
mechanism originally introduced in the paper [23]. The
architecture of BERT is complex to describe succinctly
and is beyond the scope of this paper. However, in

essence, the self-attention mechanism used in BERT
takes inspiration from how humans pay visual attention
to text stimuli such as words in a sentence - we fixate
and associate relevant terms in a sentence and skip
over irrelevant words. Similarly, the encoder module
in BERT takes as input a long text sequence, encodes,
and generates a word embedding for the input sequence,
and using the self-attention mechanism, it recodes and
weighs the relevance of words in the sequence to
highlight the pertinent parts in the long text. For
the full description of the BERT model, please refer
to the original paper[23]. Like GloVe, we can use
the transfer learning approach to fine-tune the BERT
model for specific NLP tasks. Sentence-BERT is a
modified version of the pertained BERT network that
uses Siamese network structures to derive semantically
meaningful sentence embeddings that enables us to
compute the cosine similarity between a pair of email
texts [24].

Partial Matching using NLP

The NLP methods described in the previous section
were used in the IBL model to determine similarities
between two email instances. Specifically, the NLP
methods were used as sub-models for the similarity term∑
k Sim(vk, ck) that represent the partial matching

process in the IBL model. The core idea is to use each
of the three NLP methods to represent emails as fixed
length numerical vectors. LSA and GloVe were used
to produce vectors representing word-level embeddings,
whereas BERT was used to produce feature vectors
representing sentence-level embeddings. The similarity
term in IBL is essentially defined as a cosine distance
function measuring distance between the feature vector
representations of the current email instance (ck) and
email instances stored in memory (vk).

LSA In the LSA method, all 529 email messages
obtained from the study were mapped into a matrix
with 529 columns and 6213 rows. The number of rows
represents 6213 unique words present in the corpus.
A truncated singular value decomposition method was
applied to reduce the number of dimensions to 300. The
number of dimensions was chosen to be 300 to match
the vector sizes derived from GloVe and BERT. The final
LSA matrix was of size 529∗300. Each row in the matrix
represents the feature vectors for each message derived
using the LSA approach. Similarity is calculated using
a cosine distance between two email vectors from the
LSA matrix, using the equation below.

similarity =
vk ∗ ck
‖vk‖‖ck‖
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GloVe Using transfer learning, we fine-tuned and
applied the GloVe matrix to represent each of the unique
words across the GloVe’s pre-trained 300-dimension
word vector. This produced a matrix of size 6213*300,
where 6213 is the number of unique words in the
corpus. We created another matrix (529 ∗ 6213) that
contained the number of times each of the 6213 unique
words occurred in each of the 529 messages. The
two matrices were then multiplied to produce a final
matrix (529*300) that contained the 300-dimensions
word vector representation for each message derived
using the GloVe method. Similarities between two
emails were calculated using a cosine distance function
between the corresponding two feature vectors in the
GloVe matrix.

Transformers Transformers has been used to
achieve high performance in many natural language
processing tasks. We used nli-distilroberta-base-v2
model, a distil RoBERT model, fine-tuned on
SNLI(Standard Natural Language Inference) corpus[25]
with 84.38 performance on the STS benchmark dataset.
The SNLI is a large collection of human written
English sentence pairs labeled for semantic similarity.
This Sentence-BERT(SBERT) [24] was applied to
our dataset to derive the semantic similarity between
every pair of emails in the dataset. Figure 1
shows the architecture of the SBERT. For each email
pair (c and v), the SBERT was applied using two
identical BERT/RoBERTa models to process each email
separately. Use the pooling layer, we derive a fixed
sized length embedding vector (a and b) representing
the respective emails. Like other methods, the cosine
similarity function was used to calculate the similarity
between the two vector representations of emails.

User Perception The three NLP approaches (LSA,
GloVe, BERT) described earlier enable us to capture
semantic similarities between two email instances based
on underlying statistical properties. However, these
methods may not be representative of how humans
actually process text, recall text from memory, and make
decisions in the email management context. During
the experiment, we had asked participants to self-report
their opinion about each message presented to them
along seven dimensions that described what was in
the message. For example, whether the message
requests an action or whether the message contains a
reminder for a meeting. Therefore, as an alternative
approach, we represented each email along these 7
self-reported dimensions. The seven dimensions are
listed in table 1. Emails with similar contents will
have similar vector representations. These vectors
represent how each individual participant perceived the
contents of the message presented to them. Like with

Figure 1: Sentence BERT architecture used to represent
emails in IBL

other methods, the similarities between two emails were
calculated using a cosine distance function between the
corresponding two self-reported feature vectors.

Perception Bert Practically, it is not possible to train
cognitive agents based on user-reported email attributes.
Therefore, we re-trained the SBERT model to learn
similarities between emails based on user perceptions.
For each pair of emails, we fine-tuned the SBERT
model to predict the similarity score measured using the
user-reported attributes. The similarity score was used
as classification and it ranged from 0 to 1. 0 indicates
emails that are least similar according to users, and 1
indicates identical emails.

There were 529 unique messages in the dataset.
Therefore, there were 529*528/2= 139,656 similarity
pairs. We randomly sampled 10000 pairs of similarities
to fine-tune the downstream task in BERT. 10000 pairs
of similarities were split and trained using the ratio
7:1:2. We used a package from [24] to manage
the computation involving BERT, and all computation
was conducted on a desktop with RTX 2060 graphics
processor unit.

Simulation Procedure

Dataset from a previous laboratory study was used
to train the IBL agent and evaluate its performance
in predicting human responses to phishing emails.
The dataset includes 529 unique email messages and
contains email responses from 84 participants. Among
the 529 emails, 210 were ham emails, 15 were mass
phishing emails, 52 were promotion emails, and 252
were spear-phishing emails. To simplify the response
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Train:Test = 50%:50%

Train:Test = 80%: 20 %

Figure 2: Accuracy for IBL agent across similarity approaches, MP values and split ratios

from end-users, we encode the response (a) Respond
Immediately Or (b) Flag the email for follow-up to
response and (c) Leave the email in the inbox, (d) Delete
the email, Or (e) Delete the email and block the sender
to ignore. We trained IBL agents to model and predict
responses from each of the 84 human participants in
the laboratory study. Each IBL agent represented a
single human participant and was presented with the
same emails experienced by its human counterpart. On
average, participants in the experiment made decisions
on 80 emails which included ham emails, mass phishing
emails, and spear phishing emails. Similarly, the IBL
agents representing each participant made decisions on
the same number of emails experienced by its human
counterpart. For each email presented, the model takes
as input the context of the email and generates an
action (respond or not respond) by retrieving similar
past instances. Typically, instances are encoded as
chunks in an agent’s declarative memory that represent
the features of the decision: the context in which a
decision is made, the action taken, and the outcome of
that decision. In this work, the context was represented
as a feature vector derived for each email message using
the five similarity methods described in the previous
section. This feature vector was provided as the input to
the model. For each email feature vector presented, the
model made a decision whether to respond or not. Each
decision received outcome feedback: 1 point for correct
response and -1 point for incorrect response. Except

for the mismatch penalty parameter (see Equation 3), all
other model parameters were set to their default values.
For example, the decay parameter was set to the default
value of 0.5. We experimented with three MP parameter
values (1, 5, 30).

We also experimented with two split-ratios of
training and testing: 50-50 and 80-20. With 50-50, the
IBL agent was trained on 50% of randomly selected
emails that its human counterpart experienced, for
example, if a human participant made decisions on 100
emails during the study, the IBL agent representing the
participant was trained on 50 randomly selected emails
that the participant experienced. These emails served as
the training instances for the agent and were encoded
as instances in the declarative memory of the agent.
The agent’s decision performance was evaluated on the
remaining 50% of the emails unseen by the agent during
training. In the 80-20 split, the IBL agents were trained
on 80% of randomly chosen emails the participant
experienced and tested on the remaining 20% of emails.
Since IBL is a stochastic model, the model was trained
and evaluated 800 times to generate stable predictions
of human behavior. Using the half-width approach [26],
we estimated 800 model replications were necessary to
achieve 95% confidence with our output estimates.
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Results

We analyzed the performance of IBL agents in
predicting human response to emails. We used model
accuracy, hit rate, and correct rejection rate to measure
model performance during the test phase. For each
IBL agent representing a human participant, accuracy
measured the percentage of emails for which the model
decisions concurred with the human decisions. For
example, a 70% accuracy would indicate that IBL agent
accurately predicted the human response on seventy
percent of emails presented during the test phase. In
addition to the accuracy, the hit rate and correct rejection
rates were also calculated. As shown in Table 2, for each
IBL agent, the hit rate measured the proportion of emails
for which the IBL agent accurately chose to respond
to it, whereas correct rejection measured the proportion
of emails for which the IBL agent accurately chose to
ignore (not respond) the email.

Human

IB
L

Response Ignore
Response Hit False Alarm

Ignore Miss Correct Rejection

Table 2: Hit rate and Correct Rejection Rate

Model accuracy, hit rate, and correct rejection
rates were calculated by averaging the performance of
84 agents (representing 84 human participants) across
800 model runs. Figure 2 compares the accuracy
of IBL agents in predicting human response across
the five similarity methods (LSA, GloVe, BERT, user
perception, perception bert), three mismatch penalty
parameter values (1, 5, 30) and the two split-ratios used
for training and testing the agents (50-50 vs 80-20).
Figure 3 shows the distribution of hit rate and correct
rejection rate. Each point in the graph represents the
average hit rate and correct rejection rate of one IBL
agent predicting the response of its human counterpart.
The rates are color-coded to indicate the five different
kinds of similarity approaches compared. The average
performance with three mismatch penalty parameter
values and two split ratios were also compared and
presented in the Figure 3.

Using mixed-effects ANOVA, we tested the effect
of different similarity approaches, mismatch penalty
value, and split-ratio on all three performance measures.
Tables 3, 4, and 5 presents the results from the ANOVA
analysis for the three performance measures: accuracy,
hit rate, and correct rejection rate, respectively.
Similarity approach and mismatch penalty value were
found to have a significant effect on all three measures,
whereas the split-ratio had a significant effect on

accuracy and correct rejection rates. We will discuss
each of these results in more detail next.

Df F value Pr(>F)
MP 2 184.78 0.0000
Approach 4 228.73 0.0000
Split Ratio 1 20.45 0.0000
Approach:Split Ratio 4 0.06 0.9934
MP:Split Ratio 2 0.23 0.7938
MP:Approach 8 39.66 0.0000

Table 3: Anova table for Accuracy

Df F value Pr(>F)
MP 2 194.29 <0.001*
Approach 4 122.72 <0.001*
Split Ratio 1 4.48 0.0344*
Approach:Split Ratio 4 0.15 0.9627
MP:Split Ratio 2 5.29 0.0051*
MP:Approach 8 11.55 <0.001*

Table 4: Anova table for Correct Rejection Rate

Df F value Pr(>F)
MP 2 235.46 <0.001*
Approach 4 84.17 <0.001*
Split Ratio 1 0.00 0.9591
Approach:Split Ratio 4 0.12 0.9760
MP:Split Ratio 2 0.95 0.3861
MP:Approach 8 7.17 <0.001*

Table 5: Anova table for Hit Rate

Similarity Approach
Between the five similarity approaches we tested,

we found that the approach that used participants’
self-reports to represent emails within IBL model
performed better than all other approaches (79.7%
average accuracy). Following it closely, the second
best performing model was the approach that used the
perception Bert model, fine-tuned using participants
self-reports. Although there is a significant difference
in accuracy between the two approaches, we found that
the perception Bert model performed, on average, only
2.23% (p < 0.001) lower than the model that directly
used participants’ self-reports to represent the emails.
LSA, GloVe and canonical BERT, on average, achieved
less than 60% accuracy in predicting human participant
response. There was no significant difference in model
accuracy between using LSA, GloVe, and BERTs. From
Figure 3, it can be observed that the approach using
participants’ self-report to represent emails clustered at
the top right corner indicating higher hit rates and higher
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Train:Test = 50%: 50%

Train:Test = 80%: 20%

Figure 3: Correct Rejection Rate vs Hit Rate for IBL agent across similarity approaches, MP values and split ratios

correct rejection rates. The pattern is the same across all
values of MP and split-ratio.

To further analyze the differences in performance,
we compared the similarity scores (calculated using
cosine distance function) between all pairs of emails
derived using the GloVe approach against the similarity
scores derived using participants’ self-report. We
compared these two approaches because the GloVe
approach represents similarities calculated based on
the statistical properties of text. In contrast, the user
perception approach represents similarities calculated
based on individuals’ opinions about the email
attributes. As shown in Figure 4, the GloVe approach
considered the majority of the emails as similar to each
other, whereas the user perception approach considered
the majority of the emails to be dissimilar to each
other. We calculated the correlation between the two
matrices containing the similarity scores derived from
the two approaches. The correlation between the two
approaches was low, rperson = 0.10, p < 0.001. This
indicates that for the same pair of emails, the similarity
scores obtained using the two methods were different

from each other. It is noteworthy that both approaches
used the same cosine distance function to measure the
similarity for any given vector pair. This shows that pure
semantic methods such as LSA, GloVe and canonical
BERT were ineffective in capturing the deep contextual
differences present in emails, which may have been
considered as a significant difference from a human
perspective.

Mismatch Penalty
A large mismatch penalty(MP) value makes the IBL

agent care more about the difference between the current
instance and previous instances. Large MP values
penalize agents more for incorrect mismatches between
the incoming instance and the instance in memory.
Overall, we found that the mismatch penalty has a
significant effect on all three measures. A post-hoc
analysis revealed that irrespective of the split ratio or
similarity approach, there is a significant difference
in model accuracy between MP = 1 and MP = 5 (p
<0.001). However, the difference is not significant for
higher values of MP (MP = 30). The post-hoc analysis
also showed that the increment in MP has a significant

Page 2204



effect on hit rate and the correct rejection rates (p
<0.001). Hit rate increases by 13.85% (p <0.001) from
MP = 1 to MP = 5, and increases by 23.7% (p <0.001)
from MP = 1 to MP = 30. Similarly, the correct rejection
rate increases by 9.22% (p <0.001) for an increase in
MP from 1 to 5 and a 13.4%(p<0.001) improvement
from MP = 1 to Mp = 30. For higher MP values, the
improvement in hit rate is much more significant than
the improvement in the correct rejection rate. As shown
in Figure 3, we can observe a concave relationship
between the hit rate and correct rejection rate for MP
= 1, whereas this relationship becomes much more
linear for MP = 30. There is also a strong interaction
effect between similarity approach and MP values. As
shown in Figure 2, the models using user perception and
perception BERT approaches demonstrate an increase
in accuracy for higher values of MP, but MP does not
appear to impact the accuracy of models using LSA,
GloVe, and canonical BERT models.

Figure 4: Visualizing similarity between every pair of
emails. (Left) Similarity measured using GloVe. (Right)
Similarity measured based on user perception

Split Ratio
Finally, we tested whether the IBL model

performance depended on the amount of data used
for training the agents. We tested two commonly used
split ratios: 50-50 and 80-20. Although there was
a statistically significant effect of the split ratio on
the accuracy and correct rejection rate, as shown in
Tables 3 and 4, the improvement was only marginal. On
average, model accuracy increased by 1.4%(p<0.001)
from 50:50 to 80:20 split. The correct rejection rate
increased by 1.2%( p =0.037). The split ratio did not
have a significant effect on the hit rate. There was also
no interaction effect between split ratio and similarity
approach or between split ratio and MP.

Discussion
Our work shows that the approach used to represent

email text within IBL models can significantly affect
agent performance in predicting human response.
Furthermore, we found that using representations that

could consider how humans perceive email messages
can have a substantial impact on model performance.
We predicted participants’ responses to email messages
in a laboratory study with 79.7% accuracy by training
IBL agents with emails represented using attributes
self-reported by participants in the study. In contrast,
we achieved 71.7% accuracy by fine-tuning a BERT
model to learn similarities between emails based on
user-reported attributes. IBL agents using traditional
NLP methods (LSA and GloVe) which are effective
at capturing semantic similarities, performed better
than chance at predicting human response, similar to
the results obtained by Cranford and colleagues [9].
Overall, our results show that IBL models are able
to adequately predict human response to phishing
emails, providing evidence to our hypothesis that
people make decisions on phishing messages based on
past experiences by activating pertinent memories of
decisions made in response to similar emails in the past.

Although methods like GloVe and BERT effectively
highlight semantically important features in a piece
of text, they may not be effective at highlighting
features relevant to people in the email management
context. Therefore, as shown in Figure 4, traditional
NLP methods like GloVe may end up representing two
emails as semantically similar to each other, whereas
a human may think otherwise. For example, two
emails may contain words with similar co-occurrence
frequencies and may include similar latent topics. Yet,
they may appear different to a human because they may
be communicating two divergent messages. Therefore,
more work is necessary to understand how people
encode email messages, what salient features of emails
are encoded in the memory, and how the features
encoded may vary by the type of email (ham vs.
mass phishing vs. spear phishing). Understanding
these issues could provide us important insights into
how humans learn and make decisions on malicious
deceptive signals such as phishing emails.

One important implication of this work is that
IBL models, or cognitive models in general, could be
potentially used in the future to develop personalized
phishing probing and training solutions. For example,
IBL models could be deployed in email management
software such as Microsoft Outlook to actively learn
phishing instances that an individual may be susceptible
to and may benefit from receiving additional embedded
phishing experiences. Furthermore, instead of probing
every employee in an organization with generic
phishing templates to learn who may be vulnerable to
phishing, such human-centered, deep learning-based,
and cognitive architecture inspired methods could be
effective at quickly detecting human vulnerabilities
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within an organization.
This work, however, is not without limitations.

The models were developed and validated using a
small dataset containing human responses to emails
(legitimate and phishing) collected from a laboratory
experiment. The dataset may not truly reflect
how people would respond to phishing emails in
reality. Furthermore, there is a risk of overfitting
from fine-tuning BERT using relatively small datasets.
Finally, all the models in this work were built using
cosine distance function, which may not represent how
human partial match two given instances. Therefore, as
part of our future work, we intend to test these models on
large real-world email datasets and test its effectiveness
in adaptive training and risk assessment.
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