Supporting Managerial Decision-Making for Federated Machine Learning: Design of a Technology Selection Tool
Files
Date
2024-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6738
Ending Page
Alternative Title
Abstract
The insufficient amount of training data is a persisting bottleneck of Machine Learning systems. A large portion of the world’s data is scattered and locked in data silos. Breaking up these data silos could alleviate this problem. Federated Machine Learning is a novel model-to-data approach that enables the training of Machine Learning models, on decentralized, potentially siloed data. Despite its promising potential, most Federated Machine Learning projects never leave the prototype stage. This can be attributed to exaggerated expectations and an inappropriate fit between the technology and the use case. Current literature does not offer guidance for assessing the fit between Federated Machine Learning and their use case. Against this backdrop, we design a decision-support tool to aid decision-makers in the suitability and complexity assessment of FedML projects. Thereby, we aim to facilitate the technology selection process, avoid exaggerated expectations and consequently facilitate the success of Federated Machine Learning projects.
Description
Keywords
Special Topics in Organizational Systems and Technology, design science research, federated machine learning, technology adoption
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 57th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.