Text vs. Image: An application of unsupervised multi-modal machine learning to online reviews

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Online user-generated reviews provide a unique view into consumer perceptions of a business. Extant research has demonstrated that text mining provides insight from textual reviews. More recently, we haven seen the adoption of image mining techniques to analyze visual content as well. With data comprising of user-generated imagery (UGI) and textual reviews, we propose to perform a combination of text- and image mining techniques to extract relevant attributes from both modalities. The analysis allows for a comparison between textual and visual content in online reviews. For the UGI analysis, we use a Deep Embedded Clustering model and for the User Generated Text Analysis we use a TF-IDF based mechanism to obtain attributes and polarities. The overall goal is to extract maximum information from text and images and compare the insights we gather from both. We analyze if any modality is self-sufficient or better than the other and also if both modalities combine to give similar or contrasting insights.

Description

Keywords

Electronic Marketing, machine learning, deep learning, online reviews, text mining, image mining, e-commerce, marketing

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.