Match or Mismatch? How Matching Personality and Gender between Voice Assistants and Users Affects Trust in Voice Commerce
Files
Date
2022-01-04
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Despite the ubiquity of voice assistants (VAs), they see limited adoption in the form of voice commerce, an online sales channel using natural language. A key barrier to the widespread use of voice commerce is the lack of user trust. To address this problem, we draw on similarity-attraction theory to investigate how trust is affected when VAs match the user’s personality and gender. We conducted a scenario-based experiment (N = 380) with four VAs designed to have different personalities and genders by customizing only the auditory cues in their voices. The results indicate that a personality match increases trust, while the effect of a gender match on trust is non-significant. Our findings contribute to research by demonstrating that some types of matches between VAs and users are more effective than others. Moreover, we reveal that it is important for practitioners to consider auditory cues when designing VAs for voice commerce.
Description
Keywords
Artificial Intelligence-based Assistants, auditory cues, gender match, personality match, similarity attraction theory, voice assistants
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.