Deep Learning Strategies for Industrial Surface Defect Detection Systems

Date
2022-01-04
Authors
Martin, Dominik
Heinzel, Simon
Kunze Von Bischhoffshausen, Johannes
Kühl, Niklas
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Deep learning methods have proven to outperform traditional computer vision methods in various areas of image processing. However, the application of deep learning in industrial surface defect detection systems is challenging due to the insufficient amount of training data, the expensive data generation process, the small size, and the rare occurrence of surface defects. From literature and a polymer products manufacturing use case, we identify design requirements which reflect the aforementioned challenges. Addressing these, we conceptualize design principles and features informed by deep learning research. Finally, we instantiate and evaluate the gained design knowledge in the form of actionable guidelines and strategies based on an industrial surface defect detection use case. This article, therefore, contributes to academia as well as practice by (1) systematically identifying challenges for the industrial application of deep learning-based surface defect detection, (2) strategies to overcome these, and (3) an experimental case study assessing the strategies' applicability and usefulness.
Description
Keywords
Big Data and Analytics: Pathways to Maturity, deep learning, design science research, industry 4.0, surface defect detection
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.