
Deep Learning Strategies for Industrial Surface Defect Detection Systems

Dominik Martin
Karlsruhe Institute

of Technology (KIT)
dominik.martin@kit.edu

Simon Heinzel
Karlsruhe Institute

of Technology (KIT)
simon.heinzel@alumni.kit.edu

Johannes Kunze von Bischhoffshausen
Trelleborg Sealing Solutions

Germany GmbH
johannes.kunze@trelleborg.com

Niklas Kühl
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Abstract

Deep learning methods have proven to outperform
traditional computer vision methods in various areas
of image processing. However, the application of deep
learning in industrial surface defect detection systems
is challenging due to the insufficient amount of training
data, the expensive data generation process, the small
size, and the rare occurrence of surface defects. From
literature and a polymer products manufacturing use
case, we identify design requirements which reflect
the aforementioned challenges. Addressing these, we
conceptualize design principles and features informed
by deep learning research. Finally, we instantiate
and evaluate the gained design knowledge in the form
of actionable guidelines and strategies based on an
industrial surface defect detection use case. This article,
therefore, contributes to academia as well as practice
by (1) systematically identifying challenges for the
industrial application of deep learning-based surface
defect detection, (2) strategies to overcome these, and
(3) an experimental case study assessing the strategies’
applicability and usefulness.

1. Introduction

Quality control is an essential process in the
manufacturing industry [1]. As part of quality
management, it ensures the quality of manufactured
products. In this process, the visual inspection of
finished products plays an important role [2]. Typically,
this task is carried out manually, and workers are trained
to identify complex surface defects [3]. However,
manual visual inspection is monotonous, laborious,
fatiguing, subjective, lacking in good reproducibility,
too slow in many cases, and costly. As a result,
automated visual inspection systems have spread in the
industry since the 1970s. The main benefits of such
systems include impartial and reproducible inspection
results, complete and detailed documentation, faster
inspection rates, and lower costs [3, 2].

In the past, these systems relied on traditional
computer vision methods, which addressed at least
some of the issues of manual visual inspection [4].
However, with the Industry 4.0 paradigm, which aims
to increase automation of traditional manufacturing
processes through digitization, the trend is moving
towards the generalization of the production line, where
rapid adaptation to a new product is required [5].
Traditional computer vision methods are unable to
provide such flexibility. They rely on a two-step
process of extracting handcrafted features and training
an appropriate classifier. The critical step in this
process lies in the extraction of robust handcrafted
feature representations for the specific problem at hand
[6]. This step leads to lengthy development cycles [2]
and requires a high level of human expertise [7]. A
solution that allows for improved flexibility and reduced
engineering efforts can be found in deep learning
methods. Deep learning methods learn the relevant
features directly from the raw data, eliminating the
need for handcrafted feature representations. In recent
years, these methods have reached and even exceeded
human-level performance on image-related tasks such
as image classification [8].

However, deep learning methods are still rarely
applied in automated visual inspection systems due to
several reasons [9]. The available datasets are usually
too small to train deep neural networks [10, 6, 11,
7, 1, 12, 13] and the generation of such datasets is
expensive due to the intensive manual work required
for labeling the data [7, 12]. Additionally, surface
defects can be extremely small, making their detection
even more challenging [11, 14]. The black-box nature
of deep neural networks also makes it difficult for
human domain experts to understand what the network
considers a defect [15].

Against this background, we contribute to the
information systems (IS) literature by investigating
suitable strategies that enable the successful application
of deep learning methods in industrial surface defect
detection systems (SDDS). More specifically, we aim to
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answer the following research questions:

RQ1: Which challenges exist for deep learning
methods in industrial SDDS, and which
design requirements can be derived from these
challenges?

RQ2: Which deep learning strategies in the form of
design principles and design features address
these design requirements and are suitable for
industrial SDDS?

RQ3: Which strategies achieve the best performance in
industrial SDDS?

2. Research Design

To address the research questions raised, we follow
the Design Science Research (DSR) paradigm [16,
17]. Overall, we base our research on the three
cycle view proposed by Hevner [18], which ensures
practical applicability on the one hand and rigorous
construction and evaluation of innovative artifacts on
the other. Thus, we aim to create artifacts that solve
the problems of a specific application domain (relevance
cycle) while drawing on applicable knowledge from
theory (rigor cycle). In this particular research, we
contribute to the application domain of surface defect
detection in the manufacturing industry and base our
artifact construction on literature from the field of deep
learning.

Our specific approach is based on the DSR process
model presented by Peffers et al. [19] and consists
of six subsequent steps. Figure 1 illustrates these
steps, the resulting outputs, and the corresponding
research activities. First, we define the research problem
by identifying domain-specific challenges for deep
learning methods in relevant literature as well as through
exploratory focus groups in a case company [20]. In
several focus group sessions conducted, seven experts
from different areas such as operations, quality control
and data science were involved. From the challenges
identified, we derive design requirements (DR), which
represent generic requirements that should be met by
any artifact aiming to solve these problems [21]. This
step corresponds to the relevance cycle and addresses
RQ1. Second, we define the objectives of a solution
by inferring design principles (DP) from the design
requirements. Design principles are generic capabilities
of an artifact through which the design requirements
are addressed [21]. We base the design principles
on relevant literature from the field of deep learning;
hence this step corresponds to the rigor cycle. In the
third step, we derive design features (DF) that address

the design principles and conceptualize a framework of
interrelated design requirements, design principles, and
design features. Design features are specific capabilities
of an artifact that fulfill and implement the design
principles [21]. A design principle that is instantiated
by a design feature can be understood as an explanation
(design principle) of why a specified piece (design
feature) leads to a predefined goal (design requirement).
This step corresponds to the first design cycle and,
together with the previous step, answers RQ2. Next,
we validate the artifact proposed in the first design
cycle and demonstrate its feasibility, applicability and
usefulness [22] by instantiating it in the context of
an exemplary surface defect detection use case. We
conduct eight experiments leveraging strategies from the
framework. In step five, we evaluate the deep learning
models and draw conclusions about the different deep
learning strategies. Steps four and five, thus, address
RQ3 and represent the second design cycle. Finally, we
contribute to the body of knowledge by communicating
the identified challenges, the created artifacts, and the
evaluation results in the article at hand.

In summary, the first artifact is a framework
of interrelated design requirements, principles, and
features which captures suitable deep learning strategies
for enabling industrial surface defect detection systems.
The second artifact is an instantiation of the framework
on an industrial use case in the field of visual
inspection of engineered molded parts. In a series of
experiments, we build different deep learning models
leveraging strategies from the framework illustrating
their feasibility, applicability and usefulness. Thus, this
article aims to contribute design knowledge in the form
of operational principles/architectures and a situated
implementation of an artifact [23]. Hence, it makes
a level 2 (design cycle 1) and level 1 (design cycle
2) contribution according to Gregor and Hevner [23].
The DSR knowledge contribution type represents an
exaptation, since this article aims to extend known
solutions to new problems [23].

3. Relevance Cycle: Design Requirements
for Surface Defect Detection Systems

The relevance cycle aims to place the research in a
contextual environment and provide requirements and
acceptance criteria for the design science activities.
Thus, we provide an overview of previous research on
surface defect detection in the manufacturing industry
to identify domain-specific challenges for deep learning
methods. By leveraging insights from related literature
as well as an exploratory case study with experts from
industry, identified challenges are condensed into design
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Figure 1: Overall research design based on Peffers et al. [19] and Hevner [18]

requirements.

3.1. Surface Defect Detection

The detection of surface defects using computer
vision techniques has been widely studied in the
literature. Surface defects are considered local
anomalies in homogeneous textures like scratches,
cracks, holes, etc. This includes a wide range of
surface textures, including textile [24], wood [25], metal
[26] and ceramic tiles [27]. The methods commonly
leveraged can be divided into traditional computer
vision methods and deep learning methods. Traditional
computer vision methods are based on a two-step
process of extracting handcrafted features and training
an appropriate classifier such as an SVM or decision
tree. The critical step in this process lies in the extraction
of robust handcrafted feature representations for the
specific problem at hand.

Xie [4] categorizes the methods used to extract
these features into four different approaches: Structural
approaches focus on texture elements and their spatial
arrangement. They extract texture primitives such
as simple line segments, individual pixels, or regions
with uniform gray-levels and generate a dynamic
texture model by applying some spatial placement
rules. Structural methods are usually applied to
repetitive patterns such as textile [28], fabrics [29],
and leather [30]. Popular structural approaches include
primitive measurement [31], edge features [30], skeleton
representation [28], and morphological operations [29].
Statistical approaches analyze the spatial distribution of
pixel values. They work well on stochastic textures,
such as ceramic tiles, castings, and woods. In this
category, researchers use numerous statistics, such
as histogram properties [32], co-occurrence matrices
[33], local binary patterns [34], autocorrelation [35]
and others. Filter-based approaches apply filters to
detect features, such as edges, textures, and regions.
They can be further divided into spatial domain

filtering [36], frequency domain filtering [37], and
spatial-frequency domain filtering [38]. Model-based
approaches construct representations of images by
modeling multiple properties of the defects. In
this category, researchers use fractal models [39],
autoregressive models [40], and random field models
[41].

Shortly after the introduction of AlexNet [42], deep
learning methods began being applied more often to
surface defect detection problems. The motivation arises
from the difficulty that even domain experts struggle to
design the right set of features to detect certain defects.
Masci et al. [43] show that deep learning methods
can significantly outperform traditional computer vision
methods. They use a CNN consisting of five layers for
the classification of steel defects and achieved excellent
results. The work from Soukup and Huber-Mörk [10]
shows that regularization methods like unsupervised
layer-wise pre-training and data augmentation yield
further performance improvements. Weimer et al. [6]
evaluate several deep learning architectures with varying
depths and widths of layers on a synthetic texture
dataset. The work from Ren et al. [7] shows that
using a pre-trained network improves the performance
of deep learning methods. They also extend the problem
of surface defect detection from image classification to
image segmentation.

3.2. Design Requirements

However, especially the application of deep
learning approaches opens up a number of previously
inadequately explored challenges. One challenge,
pointed out by several authors, is the particularly small
size of the defects [11, 14]. Also in our selected
industrial use case, the defects are so small that they
are difficult to see with the naked eye. This makes
it more difficult to detect the defects and capture
them in a way that the defects are also visible in the
images. Consequently, we derive the following design
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requirement:
DR1: Industrial surface defect detection systems

should be able to detect very small defects.
A second challenge lies in the rare occurrence

of defects [7, 44, 13]. Datasets from manufacturing
processes are often highly imbalanced due to the
deliberately low probability of defect occurrences. Deep
learning methods in general are designed to minimize
the overall loss, which can result in paying more
attention to the majority class and not properly learning
the appearance of the minority class. Consequently, this
issue has to be addressed appropriately:

DR2: Industrial surface defect detection systems
should be able to detect rarely occurring defects.

A third challenge concerns the difficulty in
understanding deep neural networks [15]. Deep neural
networks are black-box networks, making them difficult
to understand or interpret [45]. The quality inspectors in
our use case also emphasize the importance of trusting
deep learning methods because their model decisions as
such are untraceable; thus:

DR3: The decisions of industrial surface defect
detection systems should be explainable.

A fourth challenge is the insufficient amount of
training data. Several authors point out that the size
of datasets is usually too small to train deep neural
networks and that the training is prone to overfitting [10,
6, 11, 7, 1, 12, 13]. A fifth challenge is the expensive
data generation process. A series of recent studies
remarks that the acquisition of images and especially
the labeling of images is costly due to the required
expert knowledge and intensive manual work [7, 12].
Consequently, we derive the fourth design requirement:

DR4: Industrial surface defect detection systems
should be able to learn from small amounts of training
data.

4. Rigor Cycle: Drawing on Deep
Learning Theory

To address the design requirements derived in the
previous section, we identify design principles by
drawing on relevant literature as well as insights from
domain experts in the field of visual inspection. Design
principles are generic capabilities of an artifact through
which the design requirements are addressed.

Since defects are often very small in relation to
the dimensions of the examined part, they can only be
captured appropriately by capturing multiple segments
of the part rather than photographing the entire part at
once. Consequently, we derive the first design principle,
which addresses DR1:

DP1: Provide the system with segment-wise

examination capabilities.
Shang et al. [44] remark that deep neural nets

should be trained on balanced datasets to make more
reliable predictions. Oversampling and undersampling
are common techniques to adjust the class distribution
of a dataset. Oversampling techniques oversample
the minority class to create a balanced dataset, and
undersampling strategies undersample the majority class
to create a balanced dataset. Consequently, we derive
the second design principle, which addresses DR2:

DP2: Provide the system with data balancing
functions.

Several authors address the problem of surface
defect detection as a binary classification problem
[10, 11, 2]. They argue that an accurate per-image
classification is often more important than an accurate
localization of the defect. Others address the problem
as a multi-class classification problem, where the model
has to specify the defect type [43, 6, 46, 14, 12,
47]. Some authors argue that the precise localization
of defects is crucial and address the problem as
a segmentation problem [7, 1, 15]. Segmentation
models output a visual localization of the defect
in the form of a segmentation map, which provide
higher information value compared to binary or even
multi-class classification. However, there seems to
be no consensus on how to address the problem of
surface defect detection. Instead, the problem of surface
defect detection is addressed according to the goals and
priorities of the specific use case. Consequently, we
derive the third design principle, which addresses DR3
and DR4:

DP3: Provide the system with mechanisms to
address the appropriate information needs of the users
based on the objectives and priorities of the specific use
case.

Previous research shows that the use of pre-trained
weights from large image datasets yields performance
improvements over deep neural networks trained from
scratch [7, 44, 47, 1]. Consequently, we derive the fourth
design principle, which addresses DR4:

DP4: Provide the system with knowledge transfer
functions to utilize shared features from other models.

Recent studies indicate that regularization methods
prevent deep neural networks from overfitting and thus
improve model performance. Popular regularization
methods include dropout [14, 1, 13] and data
augmentation [10, 6, 14, 12, 13]. Dropout is a technique
that randomly drops units and their connections from the
network during training [48]. This prevents the units
from co-adapting too much. Data augmentation is a
technique that increases the diversity of the training set
by applying random but realistic transformations such as
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flipping and rotation. Consequently, we derive the fifth
design principle, which addresses DR4:

DP5: Provide the system with regularization
mechanisms to to prevent the model from overfitting.

5. Design Cycle 1: Strategies for Enabling
Deep Learning-based SDDS

Building on the design principles presented in the
previous section, this section derives design features
capturing concrete instantiations in the specific context
of industrial surface defect detection use cases. Figure 2
depicts an overview of the design features, design
principles, and design requirements.

Design Requirements

DR1:
Detection of very

small defects

DR3:
Explainability of
model decisions

DR4:
Learn from small 
amounts of data

DR2:
Detection of rarely 
occurring defects

DP1:
Segment-wise Examination

DP2:
Data Balancing

DP3:
Information Value

DP4:
Knowledge Transfer

DP5:
Regularization

Design Principles Design Features

DF1: Segment-wise Imaging

DF2: Segment-wise Labeling

DF3: Segment-wise Classification

DF4: Undersampling

DF5: Binary Classification

DF6: Multi-class Classification

DF7: Segmentation

DF8: Pre-trained Weights

DF9: Domain Adaptation

DF10: Early Stopping

DF11: Dropout

DF12: Data Augmentation

Figure 2: Framework of interrelated design
requirements, design principles, and design features

Three design features implement the first design
principle. First, we photograph a product in segments
(DF1), second, we label each segment/image (DF2)
and, third, we derive a product classification based on
several individual segment classifications (DF3). The
second design principle is addressed by undersampling
the majority class to adjust the class distribution so
that each class is equally represented (DF4). The
third design principle requires defining the appropriate
information value and is addressed by three different
design features. The model can either output a
binary classification (DF5), a multi-class classification
(DF6), or a segmentation map (DF7). The fourth
design principle postulates knowledge transfer and is
implemented by using pre-trained weights (DF8) or
a domain adaptation method (DF9). The pre-trained

weights come from a dataset like ImageNet or
some other large image dataset. The fifth design
principle is addressed by stopping the training of a
model early when a monitored metric has stopped
improving (DF10), randomly dropping units and their
connections during training (DF11), and applying
random transformations to the training data (DF12).

6. Design Cycle 2: Surface Defect
Detection Prototype Instantiation

To evaluate the applicability and usefulness of the
framework on an industrial use case, we conduct eight
technical experiments in which we instantiate different
deep learning strategies.

6.1. Industrial Use Case

We evaluate the proposed SDDS in a company,
which manufactures so-called engineered molded parts,
which are custom-designed components. Currently,
these molded parts are 100% manually inspected before
delivery to the customer. Workers inspect each part
with a magnifying lens to ensure that it contains no
defects. These parts have a much larger diameter than,
for example, conventional O-rings and therefore do not
have a rigid shape. This makes it difficult to automate
the inspection of these engineered molded parts.

The images are taken in a controlled research and
development environment. The camera only captures
a small segment of the part at a time, and a motor
continuously rotates it in front of the camera until
every segment of the part has been captured (DF1).
This generates 135 slightly overlapping images per part,
where each image is a grayscale image with a resolution
of about 25 mega pixels.

In this way, we capture 324 defective parts
containing five different types of defects, resulting in
an initial dataset of 43,740 raw images. Figure 3
shows three exemplary defect types. Most parts are
only defective at one location, so most of the segments
are considered non-defective. This results in a very
unbalanced dataset, where only about 1.5% of images
contain a defect. Therefore, we apply an undersampling
strategy to balance out the class distribution (DF4). This
ensures that the model does not overfit the majority class
and sees defective and non-defective images at the same
frequency. The final dataset consists of 1.280 images.

6.2. Technical Experiments

The main focus of the experiments is to investigate
deep learning strategies based on DP3 and DP4. On
the one hand, deep learning models can provide
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Figure 3: Sample images of different defect types

different amounts of information value (DP3) and, on
the other hand, they can use different amounts of
knowledge transfer (DP4). The information value refers
to the output of a deep learning model and impacts
the explainability and comprehensibility of the model
decision. A model can predict whether an image
contains a defect or not (binary classification), which
defect type it contains (multi-class classification) or
where the defect is located in the image (segmentation).
However, we hypothesize that an increase in information
value is associated with higher learning difficulty, which
leads to decreased model performance. Knowledge
transfer relates to the amount of abstract knowledge
being transferred from other tasks or domains. A model
can be trained solely on the data collected for the task,
or it can utilize knowledge from a model that has been
trained on a generic dataset like ImageNet [49] (generic
transfer). Another option is to transfer knowledge from
a model that has been trained on an industrial dataset
that is supposedly more similar to the target dataset than
a generic dataset (industrial transfer). We hypothesize
that an increase in knowledge transfer leads to better
model performance and shorter training times.

Combining these two dimensions leads to nine
different experimental scenarios (Figure 4). We conduct
eight experiments in which we cover seven of the
scenarios. The two remaining scenarios are not covered
due to the lack of an appropriate industrial dataset. The
binary classification with industrial transfer scenario is
covered by two experiments using two different transfer
approaches (DF8 and DF9). However, all experiments
also cover the remaining design principles and features
from the framework (Table 1).

In the first three experiments (E1, E2, E3), we train
binary classification models using different knowledge
transfer strategies. The models build on a modified
ResNet50 [50] architecture and consist of five blocks
of convolutional layers, a global average pooling layer,
a dropout layer (DF11), and a fully-connected layer
for binary classification (DF5). In experiment E1,
we do not transfer any knowledge and initialized the
weights randomly. In experiment E2, we apply a generic
knowledge transfer by using pre-trained weights from
ImageNet [49] (DF8). In experiment E3, we apply
an industrial knowledge transfer by using pre-trained
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Figure 4: Overview of experimental scenarios
addressing information value and knowledge transfer
levels

weights from a model trained on a Kaggle dataset [51]
(DF8). This dataset consists of 12,586 images of steel
defects and contains four types of defects. We chose
this dataset because of its relatively large size, visual
similarity, and public availability. In experiments E2 and
E3, we apply data augmentation by randomly flipping,
zooming, and shifting the images (DF12).

In experiment E4, we use a modified CycleGAN [52]
to train a network that transforms images of rubber parts
into steel images (DF9). We then use this network and
a binary classifier trained on the steel dataset to detect
rubber part defects.

In experiments E5 and E6, we train multi-class
classification models using different amounts of
knowledge transfer. We use the same architecture as
in the first three experiments, except that we modify
the output layer for a multi-class classification with six
classes (DF6). In experiment E5, we do not transfer
any knowledge and initialize the weights randomly. In
experiment E5, we apply a generic knowledge transfer
by using pre-trained weights from ImageNet (DF8). In
experiment E6, we apply the same data augmentation
transformations as in experiments E2 and E3 (DF12).

In experiments E7 and E8, we train segmentation
networks using different amounts of knowledge transfer.
The output of these networks is a pixel-wise mask of the
input image, indicating which pixels belong to which
class (DF7). The networks are modified U-Nets [53].

6.3. Evaluation

To better compare the different deep learning
strategies, the problem of surface defect detection is
translated into a binary classification problem. We
evaluate the multi-class classification models in a
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Table 1: Overview of the experiments and the implemented design features

Experiment DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 DF9 DF10 DF11 DF12
E1 x x x x x - - - - x x -
E2 x x x x x - - x - x x x
E3 x x x x x - - x - x x x
E4 x x x x x - - - x - x x
E5 x x x x - x - - - x x -
E6 x x x x - x - x - x x x
E7 x x x x - - x - - x - -
E8 x x x x - - x x - x - -

one-vs-all fashion and transform the segmentation
models’ output segmentation masks into binary
classifications. We use a simple thresholding method,
where a segmentation mask is considered a positive
classification if the sum of the pixel values of the
segmentation mask is above a certain threshold. The
threshold value is set to achieve the best possible
classification accuracy in each experiment, respectively.

For all experiments, we report accuracy, precision
and recall as well as F1 score as the primary evaluation
metric (Table 2). Note that the F1 score is chosen
because it more accurately captures a classifier’s
performance on unbalanced datasets. This is relevant for
the multi-class classification models since the different
defect types are represented unevenly.

Table 2: Performance metrics of binary, multi-class
classification and segmentation experiments

Experiment Accuracy Precision Recall F1 score
E1 0.664 0.666 0.664 0.665
E2 0.974 0.974 0.974 0.974
E3 0.977 0.977 0.977 0.977
E4 0.500 0.250 0.500 0.333
E5 0.549 0.338 0.276 0.28
E6 0.930 0.903 0.894 0.898
E7 0.698 0.702 0.698 0.697
E8 0.930 0.930 0.930 0.930

Considering the binary experiments, E3 (industrial
transfer) outperforms the other models with a score of
0.977 in all metrics.

Figure 5: Example inputs (left) and the corresponding
predicted segmentation masks in segmentation
experiment E7 (middle) and E8 (right)

Overall, binary classification performs slightly better

than multi-class classification as well as segmentation.
However, when focusing on the F1 score, segmentation
outperforms multi-class classification.

7. Discussion

By instantiating the proposed design features and
their respective design principles through the conducted
experiments, applicability and usefulness of the deep
learning strategies framework on an industrial surface
defect detection tasks is demonstrated. In the following,
we separately discuss design principles and their impact.

To the best of our knowledge, this article is the
first one applying deep learning methods in the context
of surface defect detection of engineered molded parts.
The characteristics of these rubber parts present unique
challenges to the application of deep learning methods.
The very small size of the defects compared to the
parts’ large surface constitutes a major challenge when
capturing the defects with cameras. We address this
issue by segment-wise examination (DP1). In particular
we capture multiple segments (DF1) for each part and
label (DF2) and classify (DF3) the segments separately.
This enables us to achieve the required image quality
for the detection of surface defects. We also apply an
undersampling strategy (DF4) to balance the dataset
(DP2).

Furthermore, before conducting the experiments,
we hypothesised that an increase in information value
(DP3) is associated with higher learning difficulty,
which leads to decreased model performance. In
experiments E2, E6, and E8, we investigate different
information values by implementing either a binary
classification model (DF5), a multi-class classification
model (DF6), or a segmentation model (DF7) with
generic knowledge transfers. By comparing the results
of these experiments, we see that the model performance
decreases when comparing the binary classification
(E2) to the multi-class classification model (E6).
However, the segmentation model (E8) achieves the
same accuracy score as the multi-class classification
model and reaches even higher precision, recall, and
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F1 scores. A possible explanation for these results
lies in the nature of the task itself. The problem of
image segmentation is essentially a problem of image
classification on the pixel level. In image segmentation,
every pixel of an image is associated with a label
and constitutes a training sample to the algorithm.
Thus, with the same number of training images, the
segmentation model can access more training samples
and receives more expert knowledge than the binary or
multi-class classification models. The larger amount
of training samples or label information might have
outweighed higher learning difficulty. For practitioners,
this would mean that there is no direct trade-off between
model performance and information value and that it
could actually be beneficial to increase the information
value provided by a model without performance loss.

We also hypothesized that an increase in knowledge
transfer (DP4) leads to better model performance
as well as faster training times. From the results
presented, it is clear that the use of pre-trained
weights (DF8) impacts model performance and training
time. In the binary classification, the multi-class
classification, and the segmentation experiments, the
models using pre-trained weights (E2, E3, E6, E8)
outperform the models without knowledge transfer (E1,
E5, E7). Additionally, the models with pre-trained
weights converge faster than the models trained from
scratch. Figure 6 shows saliency maps [54] of the
binary classification models for five exemplary samples.
We can see that the model without knowledge transfer
(second column) did not learn to detect defects but
instead pays attention to some other pattern in the data.
The models with knowledge transfer (third and fourth
column) learned to recognize defects correctly. The
pre-trained weights from a knowledge transfer leverage
additional amounts of training data and produce more
sensitive gradients than randomly initialized weights.
This helps the model to converge towards the global
minimum faster. However, the binary classification
experiments results suggest that an industrial knowledge
transfer (E3) offers only a marginal improvement over
a generic knowledge transfer (E2). This might be
due to the steel dataset not being similar enough
to the rubber part dataset. Even though both
datasets contain industrial surface defects, the steel
and rubber part images’ visual appearance is still quite
different. Therefore, the steel dataset might not contain
significantly more domain-specific knowledge than the
generic ImageNet dataset. From this standpoint, the
results can be considered a positive indicator that an
actual industrial knowledge transfer, for example, from
one molded part type to another one, can produce
more significant performance improvements. This

assumption should be addressed in future research. For
practitioners, the key finding is that already a generic
knowledge transfer leads to significant performance
improvements.

Figure 6: Activation maps of binary classification
models E1-E3 (from left to right)

In all experiments, we see that training and
validation loss converge together and that the validation
loss does not increase again in any of the experiments.
Therefore, we conclude that the applied regularization
(DP5) techniques, such as early stopping (DF10),
dropout (DF11), and data augmentation (DF12) features
successfully prevent the models from overfitting and
address design requirement DR4.

8. Conclusion

This article utilizes a design science research
approach to investigate suitable strategies that enable
the successful application of deep learning methods
in industrial surface defect detection systems. More
specifically, we conceptualized a framework of
interrelated design requirements, design principles,
and design features that captures suitable deep
learning strategies for industrial SDDS. In a series
of experiments, we utilized the framework to build
different deep learning models in an industrial case
study. We achieved a 97.7% accuracy in the binary
classification of molded part defects using only a
very small dataset. The evaluation results showed
that transferring knowledge from a generic dataset
significantly improves the performance of models
for industrial applications. Furthermore, the results
indicated that deep learning methods can be successfully
applied in surface defect detection systems and that our
framework provides a set of practical guidelines for
developing visual inspection solutions.

The results, however, should be assessed in light
of its limitations. A first limitation relates to the
experimental evaluation of deep learning strategies
in a single use case. While a quantitative and
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broader investigation of deep learning strategies is
desirable and encouraged, we want to emphasize that
while writing this article, there were no sufficiently
large and labeled datasets publicly available for most
industrial applications. A second limitation refers to
the variety and number of conducted experiments. Our
experiments are focused primarily on two aspects of
the framework. Conducting further experiments would
have enabled us to draw more substantiated conclusions
about the remaining aspects of the framework. A third
limitation relates to the execution of the experiments.
Our hyperparameters are based on pre-tests and
state-of-the-art recommendations. Conducting a
systematic hyperparameter optimization might have
resulted in slightly better model performances; however,
our main goal is to evaluate different deep learning
strategies and not to achieve the best model performance
possible.

Beyond the aforementioned opportunities, there are
many other possibilities to extend the work of this
article. We encourage scholars to further investigate
the impact of information value on model performance
and the amount of required training data. Another
interesting opportunity lies in the further investigation
of industrial knowledge transfers with more suitable
datasets.
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