Feature Extraction for Polish Language Named Entities Recognition in Intelligent Office Assistant

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The purpose of this contribution is to present a feature extractor that was designed as a part of a Named Entity Recognition (NER) system, which is to be used in a Robotic Process Automation application with a self-learning ability. The NER system has a screen of the user interface as its input, and tries to recognize and categorize all the named entities that can be located within this screen. The set of features that can be extracted from the input, is discussed in the article. The local context features appear to be very important in the considered problem. Experiments show that the entities are recognized with a rate that is satisfactory from the business perspective.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, decision trees, named entity recognition, robot process automation, semantic context

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.