Consideration of the Hawaiian Collector Urchin, Tripneustes gratilla, as a Biocontrol Agent.

Date
2018-08
Authors
Westbrook, Charley E.
Contributor
Advisor
Department
Marine Biology
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
We investigate the survivorship, growth and diet preferences of hatchery-raised juvenile urchins, Tripneustes gratilla, to evaluate the efficacy of their use as biocontrol agents in the efforts to reduce alien invasive algae. In flow-through tanks, we measured urchin growth rates, feeding rates and feeding preferences among diets of the most common invasive algae found in Kāneʻohe Bay, Hawaiʻi: Acanthophora spicifera, Gracilaria salicornia, Eucheuma denticulatum and Kappaphycus clade B. Post-transport survivorship of outplanted urchins was measured in paired open and closed cages in three different reef environments (lagoon, reef flat and reef slope) for a month. Survivorship in closed cages was highest on the reef flat (∼75%), and intermediate in the lagoon and reef slope (∼50%). In contrast, open cages showed similar survivorship on the reef flat and in the lagoon, but only 20% of juvenile urchins survived in open cages placed on the reef slope. Urchins grew significantly faster on diets of G. salicornia (1.58 mm/week ± 0.14 SE) and Kappaphycus clade B (1.69 ± 0.14 mm/wk) than on E. denticulatum (0.97 ± 0.14 mm/wk), with intermediate growth when fed on A. spicifera (1.23 ± 0.11 mm/wk). Interestingly, urchins display size-specific feeding preferences. In non-choice feeding trials, small urchins (17.5–22.5 mm test diameter) consumed G. salicornia fastest (6.08 g/day ± 0.19 SE), with A. spicifera (4.25 ± 0.02 g/day) and Kappaphycus clade B (3.83 ± 0.02 g/day) intermediate, and E. denticulatum was clearly the least consumed (2.32 ± 0.37 g/day). Medium-sized (29.8–43.8 mm) urchins likewise preferentially consumed G. salicornia (12.60 ± 0.08 g/day), with less clear differences among the other species in which E. denticulatum was still consumed least (9.35 ± 0.90 g/day). In contrast, large urchins (45.0–65.0 mm) showed no significant preferences among the different algae species at all (12.43–15.24 g/day). Overall consumption rates in non-choice trials were roughly equal to those in the choice trials, but differences among feeding rates on each species were not predictive of feeding preferences when urchins were presented all four species simultaneously. In the choice feeding trials, both small and medium urchins clearly preferred A. spicifera over all other algae (roughly twice as much consumed as any other species). Again, however, differences were less pronounced among adult urchins, with adults showing a significant preference for A. spicifera and Kappaphycus clade B compared to the other two algal species. These findings indicate that outplanted urchins are surviving on the reef flats and eating a variety of alien invasive algae as intended. Although juvenile urchins show stronger feeding preferences, these animals grow quickly, and adult urchins are more generalist herbivores that consume all four alien invasive algae.
Description
Keywords
Invasive, Algae, Biocontrol, Feeding Preference
Citation
Extent
Format
Geographic Location
Time Period
Related To
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.