HESPIDS: A Hierarchical and Extensible System for Process Injection Detection using Sysmon
Files
Date
2022-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Advanced Persistent Threat (APT) actors are increasingly utilizing Living-off-the-Land (LotL) cyber attack techniques to avoid detection. LotL are techniques that abuse legitimate functionality to perform malicious cyber activities. A common LotL attack technique, that is currently very difficult to detect and prevent, is malicious process injection, MITRE ATT\&CK Process Injection ID: T1055. We report on the initial results for HESPIDS: A Hierarchical and Extensible System for Process Injection Detection using Sysmon. We developed a hierarchical graph-based detection approach for accurate and automated detection for five process injection techniques in Windows clients. These techniques include four of 11 T1055 sub-techniques: DLL Injection, PE Injection, APC Injection, Process Hollowing, and a T1056 sub-technique: API Hooking (T1056.004). Our novel detection approach exhibits, within the limitations of our small testing environment, very high sensitivity and specificity. HESPIDS demonstrates a promising avenue for development of automated detection of advanced cybersecurity threats.
Description
Keywords
Cyber Operations, Defence, and Forensics, advanced persistant threats, living off the land, process injection
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.