Tweeting Your Mental Health: an Exploration of Different Classifiers and Features with Emotional Signals in Identifying Mental Health Conditions
Date
2018-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Applying simple natural language processing methods on social media data have shown to be able to reveal insights of specific mental disorders. However, few studies have employed fine-grained sentiment or emotion related analysis approaches in the detection of mental health conditions from social media messages. This work, for the first time, employed fine-grained emotions as features and examined five popular machine learning classifiers in the task of identifying users with self-reported mental health conditions (i.e. Bipolar, Depression, PTSD, and SAD) from the general public. We demonstrated that the support vector machines and the random forests classifiers with emotion-based features and combined features showed promising improvements to the performance on this task.
Description
Keywords
Social Media and Healthcare Technology, Emotion Analysis, Mental Health, Machine Learning, Social Media, Text Mining
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.