An End-to-End Machine Learning Solution for Anxiety and Depressive Disorder Symptom Occurrence During COVID-19: A New York Case Study

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Anxiety and depression during the COVID-19 pandemic have heightened as evidenced by the rapidly growing corpus of research articles suggesting a link between the pandemic and mental health. This paper proposes a unique end-to-end user-centric machine learning (ML) architecture, capable of assessing the quality of ML predictions about the occurrence of anxiety and/or depression symptoms. A case study is presented using official New York State COVID-19 data, highlighting the plug-and-play capabilities of this architecture for both external features, and newer ML models. This is demonstrated through the formal design of a custom weighted clustering algorithm which outperforms conventional unsupervised techniques in grouping symptomatic cases. The ability to augment external sentiment data mined from social media platforms like Twitter, increases the predictive power of this architecture. This work serves as a blueprint to build a practical ML solution to better gauge the effect of future pandemic waves on mental health.

Description

Keywords

Big Data on Healthcare Application, healthcare, machine learning, social media

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.