Crafting Audience Engagement in Social Media Conversations: Evidence from the U.S. 2020 Presidential Elections
Files
Date
2022-01-04
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Observing inconsistent results in prior studies, this paper applies the elaboration likelihood model to investigate the impact of affective and cognitive cues embedded in social media messages on audience engagement during a political event. Leveraging a rich dataset in the context of the 2020 U.S. presidential elections containing more than 3 million tweets, we found the prominence of both cue types. For the overall sample, positivity and sentiment are negatively related to engagement. In contrast, the post-hoc sub-sample analysis of tweets from famous users shows that emotionally charged content is more engaging. The role of sentiment decreases when the number of followers grows and ultimately becomes insignificant for Twitter participants with a vast number of followers. Prosocial orientation (“we-talk”) is consistently associated with more likes, comments, and retweets in the overall sample and sub-samples.
Description
Keywords
Mediated Conversation, big data, engagement, sentiment analysis, social media
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.