Crafting Audience Engagement in Social Media Conversations: Evidence from the U.S. 2020 Presidential Elections

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Observing inconsistent results in prior studies, this paper applies the elaboration likelihood model to investigate the impact of affective and cognitive cues embedded in social media messages on audience engagement during a political event. Leveraging a rich dataset in the context of the 2020 U.S. presidential elections containing more than 3 million tweets, we found the prominence of both cue types. For the overall sample, positivity and sentiment are negatively related to engagement. In contrast, the post-hoc sub-sample analysis of tweets from famous users shows that emotionally charged content is more engaging. The role of sentiment decreases when the number of followers grows and ultimately becomes insignificant for Twitter participants with a vast number of followers. Prosocial orientation (“we-talk”) is consistently associated with more likes, comments, and retweets in the overall sample and sub-samples.

Description

Keywords

Mediated Conversation, big data, engagement, sentiment analysis, social media

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.