Achieving Lean Data Science Agility Via Data Driven Scrum

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper first explores the concept of a lean project and defines four principles team should follow to achieve lean data science. It then describes a new team process framework, which we call Data Driven Scrum (DDS), which enables lean data science project agility. DDS is similar to Scrum but key differences include that DDS defines capability-based iterations (as compared to Scrum time-based sprints), DDS increases the focus in observing and analyzing the output of each iteration (experiment), and that DDS defines process improvement meetings (e.g. retrospectives iteration reviews) to be held on a frequency the team deems appropriate (as compared to Scrum which defines these meetings to be at the end of each iteration). The paper also reports on a pilot study of an organization that adopted the DDS framework.

Description

Keywords

Agile and Lean: Organizations, Products and Development, agile, kanban, process, scrum

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.