Bring Me a Good One: Seeking High-potential Startups using Heterogeneous Venture Information Networks

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

4323

Ending Page

Alternative Title

Abstract

The rapid acceleration of technology and the evolving global economy have led to a significant surge in high-potential startups, presenting immense opportunities for venture capital firms and investors to support and benefit from these innovative ventures. However, identifying startups with the highest likelihood of success remains a complex task, necessitating the examination of various information sources, including firm demographics, management team composition, and financial performance. The effectiveness of existing methodologies, such as feature-based and network-topological approaches, is limited for predicting high-potential startups. In response, we propose a novel Venture Graph Neural Network (VenGNN) model, leveraging Heterogeneous Information Networks (HIN) and Graph Neural Networks (GNN) techniques to address the prediction problem. Our experimental analysis reveals that VenGNN outperforms state-of-the-art models by 15-20% across a wide range of performance metrics.

Description

Keywords

Economic and Societal Impacts of Technology, Data, and Algorithms, graph neural networks, heterogeneous information networks, high-potential startups

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.