Bring Me a Good One: Seeking High-potential Startups using Heterogeneous Venture Information Networks
Files
Date
2024-01-03
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
4323
Ending Page
Alternative Title
Abstract
The rapid acceleration of technology and the evolving global economy have led to a significant surge in high-potential startups, presenting immense opportunities for venture capital firms and investors to support and benefit from these innovative ventures. However, identifying startups with the highest likelihood of success remains a complex task, necessitating the examination of various information sources, including firm demographics, management team composition, and financial performance. The effectiveness of existing methodologies, such as feature-based and network-topological approaches, is limited for predicting high-potential startups. In response, we propose a novel Venture Graph Neural Network (VenGNN) model, leveraging Heterogeneous Information Networks (HIN) and Graph Neural Networks (GNN) techniques to address the prediction problem. Our experimental analysis reveals that VenGNN outperforms state-of-the-art models by 15-20% across a wide range of performance metrics.
Description
Keywords
Economic and Societal Impacts of Technology, Data, and Algorithms, graph neural networks, heterogeneous information networks, high-potential startups
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 57th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.