Capacity usage determination of a Capacitor-less D-STATCOM considering Power System Uncertainties
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
2580
Ending Page
Alternative Title
Abstract
The increasing adoption of distributed energy resources (DERs), particularly solar generation and the use of unconventional loads such as plug-in electric vehicles (PHEVs), has a profound impact on the planning and operation of electric distribution systems. In particular, PHEV charging introduces stochastic peaks in energy consumption, while solar generation is fraught with variability during intermittent clouds. The stochastic nature of such DERs renders the operation of mechanical assets such as on-load tap changers and switched capacitor banks ineffective. A possible solution to mitigate the undesirable effects of DERs is using solid-state-based devices such as a distribution static synchronous compensator (D-STATCOM). This paper examines the capacity usage of a capacitor-less D-STATCOM in distribution systems while considering the uncertainties associated with using the aforementioned DERs. We propose a Monte Carlo simulation to study the capacity usage problem with DER inputs sampled from the proposed underlying distributions.
Description
Keywords
Distributed, Renewable, and Mobile Resources, expectation-maximization, nonhomogeneous poisson process, time series analysis, uncertainty quantification, unsupervised learning
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.