Trade-offs between Battery Energy Storage and Hydrogen Storage in Off-Grid Green Hydrogen Systems
Files
Date
2025-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3097
Ending Page
Alternative Title
Abstract
Green hydrogen, produced using renewables through electrolysis, can be used to reduce emissions in the hard-to-abate industrial sector. Efficient production and large-scale deployment require storage to mitigate electrolyzer degradation and ensure stable hydrogen supply. This paper explores the impacts and trade-offs of battery and hydrogen storage in off-grid wind-to-hydrogen systems, considering degradation of batteries and electrolyzers. Utilizing an optimization model, we examine system performance and costs over a wide range of storage capacities and wind profiles. Our results show that batteries smooth short-term fluctuations and minimize electrolyzer degradation but can experience significant degradation resulting from frequent charge/discharge cycles. Conversely, hydrogen storage provides long-term energy buffering, essential for sustained hydrogen production, but can increase electrolyzer cycling and degradation. Combining battery and hydrogen storage enhances system reliability, reduces component degradation, and reduces operational costs. This highlights the importance of strategic storage investments to improve the performance and costs of green hydrogen systems.
Description
Keywords
Policy, Markets, and Analytics, battery energy storage, hybrid renewable energy systems, hydrogen storage
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 58th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.