The feedback dynamics of brain-computer interfaces in a distributed processing environment

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper describes a distributed paradigm for human brain-computer interfaces that can incorporate machine learning-directly stimulus feedback to the subject. Specifically, we use OpenBCI hardware and software to capture real-time EEG (Electroencephalography) waveforms from a subject on a host ''client" computer and stream them to another ''server" computer which could perform complex analyses on the waveforms prior to sending commands back to the OpenBCI interface directing alterations to the stimulus. In addition to describing the conceptual system framework, we present here the test results quantifying the closed-loop system latencies under various conditions. Quantifying latency in any feedback control loop (in this case, one that actually contains the human subject's brain) is vital since excess latency can destabilize a system.

Description

Keywords

IT Architectures and Implementations in Healthcare Environments, adaptive framework, brain, brain-computer interface, eeg

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.