TrialView: An AI-powered Visual Analytics System for Temporal Event Data in Clinical Trials

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1169

Ending Page

Alternative Title

Abstract

Randomized controlled trials (RCT) are the gold standards for evaluating the efficacy and safety of therapeutic interventions in human subjects. In addition to the pre-specified endpoints, trial participants’ experience reveals the time course of the intervention. Few analytical tools exist to summarize and visualize the individual experience of trial participants. Visual analytics allows integrative examination of temporal event patterns of patient experience, thus generating insights for better care decisions. Towards this end, we introduce TrialView, an information system that combines graph artificial intelligence (AI) and visual analytics to enhance the dissemination of trial data. TrialView offers four distinct yet interconnected views: Individual, Cohort, Progression, and Statistics, enabling an interactive exploration of individual and group-level data. The TrialView system is a general-purpose analytical tool for a broad class of clinical trials. The system is powered by graph AI, knowledge-guided clustering, explanatory modeling, and graph-based agglomeration algorithms. We demonstrate the system’s effectiveness in analyzing temporal event data through a case study.

Description

Keywords

Decision Intelligence and Visual Analytics, clinical trial, cluster model, graph ai, visual analytics

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.