A Domain Oriented LDA Model for Mining Product Defects from Online Customer Reviews

Date
2017-01-04
Authors
Qiao, Zhilei
Zhang, Xuan
Zhou, Mi
Wang, Gang Alan
Fan, Weiguo
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Online reviews provide important demand-side knowledge for product manufacturers to improve product quality. However, discovering and quantifying potential products’ defects from large amounts of online reviews is a nontrivial task. In this paper, we propose a Latent Product Defect Mining model that identifies critical product defects. We define domain-oriented key attributes, such as components and keywords used to describe a defect, and build a novel LDA model to identify and acquire integral information about product defects. We conduct comprehensive evaluations including quantitative and qualitative evaluations to ensure the quality of discovered information. Experimental results show that the proposed model outperforms the standard LDA model, and could find more valuable information. Our research contributes to the extant product quality analytics literature and has significant managerial implications for researchers, policy makers, customers, and practitioners.
Description
Keywords
Product defects, online customer reviews, text analysis, LDA, product quality
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 50th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.