Fast Generation of Heterogeneous Mental Models from Longitudinal Data by Combining Genetic Algorithms and Fuzzy Cognitive Maps

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1570

Ending Page

Alternative Title

Abstract

Models that capture the heterogeneous perspectives of individuals are essential to test tailored interventions, such as behavior change interventions. Although Fuzzy Cognitive Maps (FCMs) have a rich history in depicting systems, they were either developed at an individual level through facilitated sessions, or created for an entire population through machine learning. The need to automatically create individual FCMs from data has started to be addressed, but the proposed solution was computationally prohibitive and thus could not be deployed over a large population. In this work, we use a state-of-the-art evolutionary algorithm (CMA-ES) to create individual FCMs by leveraging the growing availability of longitudinal data. We demonstrate on a real-world case study that our solution is both accurate and fast to compute. Our experiments on synthetic data also show that our approach can scale to a large number of measurements, but it cannot currently be applied to highly noisy datasets.

Description

Keywords

Soft Computing: Theory Innovations and Problem-Solving Benefits, fuzzy systems, genetic algorithms, machine learning, soft computing

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.