Detecting potential money laundering addresses in the Bitcoin blockchain using unsupervised machine learning

Date
2022-01-04
Authors
Stefánsson, Hilmar Páll
Grímsson, Huginn Sær
Þórðarson, Jón Kristinn
Oskarsdottir, Maria
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Money laundering is a serious problem worldwide, especially in the crypto market. This is mostly because of the anonymity that many cryptocurrencies offer. That is one of the reasons why cryptocurrencies are a haven for money laundering, because it is easier for criminal entities to buy the currency and then trade it for real fiat money. Detecting money laundering in cryptocurrency can be tricky because the crypto network is large and convoluted and nearly impossible to analyze by hand. What we can do is look at addresses that took part in transactions as actors and then use machine learning to predict what addresses are possibly laundering money. In this paper we intend to analyze methods that can be used to detect money laundering in Bitcoin using machine learning to empower investigators to more accurately and efficiently determine whether a suspicious activity is money laundering.
Description
Keywords
Fraud Detection Using Machine Learning, bitcoin, blockchain, fraud detection, money laundering, unsupervised machine learning
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.