The Ecosystem of Machine Learning Methods
Files
Date
2021-01-05
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
5871
Ending Page
Alternative Title
Abstract
Machine learning (ML) is a rapidly evolving field and plays an important role in today’s data-driven business environment. Many digital innovations in domains as diverse as healthcare, banking, energy, and retail are powered and enabled by ML. Examples include search engines, recommendation systems, pattern recognition, computer vision, and natural language processing. A key element in ML innovation is the advancement of the underlying methods, which specify how machines should algorithmically process, derive patterns, and learn from data for a given decisioning task. The speed at which this is happening is exponential, with researchers leveraging and building upon existing building blocks as well as introducing entirely new methods. Given the speed, scale, and complexity, understanding this complex evolving ML method space can be challenging. What methods are core and peripheral to ML? Which methods span task areas? How are ML methods evolving? In this exploratory research paper, I address these questions by (1) framing the ML method space and (2) visualizing the evolving structure of the ML methods ecosystem. The results reveal several foundational ML building blocks, different coupling levels between ML areas, and variable speeds of evolution. The study also provides insights into how digital innovation evolves at an algorithmic level. I discuss the implications of the findings and describe opportunities for future ML ecosystem-focused research.
Description
Keywords
Digital Innovation, Transformation, and Entrepreneurship, digital innovation, ecosystem, machine learning, visualization
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.