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Abstract

Machine learning (ML) is a rapidly evolving field
and plays an important role in today’s data-driven
business environment. Many digital innovations in
domains as diverse as healthcare, banking, energy,
and retail are powered and enabled by ML. Examples
include search engines, recommendation systems,
pattern recognition, computer vision, and natural
language processing. A key element in ML innovation
is the advancement of the underlying methods, which
specify how machines should algorithmically process,
derive patterns, and learn from data for a given
decisioning task. The speed at which this is happening
is exponential, with researchers leveraging and building
upon existing building blocks as well as introducing
entirely new methods. Given the speed, scale, and
complexity, understanding this complex evolving ML
method space can be challenging. What methods are
core and peripheral to ML? Which methods span task
areas? How are ML methods evolving? In this
exploratory research paper, I address these questions by
(1) framing the ML method space and (2) visualizing
the evolving structure of the ML methods ecosystem.
The results reveal several foundational ML building
blocks, different coupling levels between ML areas,
and variable speeds of evolution. The study also
provides insights into how digital innovation evolves
at an algorithmic level. I discuss the implications of
the findings and describe opportunities for future ML
ecosystem-focused research.

1. Introduction

Whether you like it or not, we live in a highly
algorithmic world [1, 2, 3]. Search engines find relevant
information to our daily queries [4]. Virtual assistant
technologies recognize our voice commands to serve
up the latest content. Social media algorithms decide
what content we see [5]. Facial recognition algorithms
enable us to open our smartphones. Navigation systems

suggest optimal routes. Retail providers customize
our shopping experience [6]. Medical diagnostic tools
make personalized treatment suggestions [7]. Home
automation tools dynamically adjust temperature and
lighting in our living environments. And digital
media companies make movie recommendations based
on our viewing history and preferences [8]. The
pervasiveness of algorithms in the business domain is
equally staggering. Today’s high-performing companies
leverage algorithms to optimize their supply chains,
predict system and infrastructure failures, identify
fraudulent behavior, and innovate new products [9]. If
you can think of a domain, it is quite likely that there is
some algorithm behind it.

All of these seemingly pervasive digital experiences
are powered and enabled by simple to highly
sophisticated algorithms that have been made possible
by massive advances in a combination of digital
technologies, including big data, artificial intelligence,
networks, and high-performance computing [10, 11].
At the core of these intelligent, algorithmic-centric
digital offerings are machine learning (ML) methods
that can process data, detect complex patterns, and
continuously learn at staggering scale and speed
[12]. The pace of innovation in ML appears to be
exponential. Today there are nearly 50,000 ML-specific
public GitHub repositories with thousands of commits
daily1. Similarly, we can identify tens of thousands
of ML-related research papers on the the open-access
archive arxiv.org. Driven by an open-source oriented
developer ecosystem, ML researchers leverage and build
upon existing building blocks as well as introduce
entirely new methods on a continuous basis.

While there is a growing interest in ML in
both research and practice [12, 13], it is the
aforementioned scale, speed, and complexity that makes
an understanding of the evolving ML method space
challenging. What methods are core and peripheral
to the ML field? How is this field evolving? Which
methods span task areas? In this exploratory research

1https://github.com/topics/machine-learning
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paper, I address these questions by (1) framing the ML
method space and (2) visualizing the evolving structure
of the ML methods ecosystem following a data-driven
approach. The results reveal complex networked
structure, with several foundational ML building blocks,
different coupling levels between ML areas, and variable
speeds of evolution. The study provides particular
insights into how innovation organizes and evolves
at an algorithm-level. I discuss the implications
of the findings and describe opportunities for future
ML-focused digital innovation research.

2. Framing the ML Method Space

While ML has become a particular prominent
topic in the last few years, the concept of machine
learning has in fact been around for decades [14,
15]. Rooted in the belief that machines could be
designed in ways that they could automatically improve
through experience, artificial intelligence (AI) pioneers
in the late 1950s developed methods that taught
computers how to play games and get better (through
a technique called alpha-beta pruning2 that evolved
into the minimax algorithm) [16], to recognize images
(through a technique called the perceptron algorithm3,
an early version of an artificial neural network) [17],
or to recognize patterns through the “nearest neighbor
rule”, a key predecessor to modern GPS mapping
applications and recommendation systems [18]. Indeed,
many of today’s ML applications, such as data mining,
natural language processing, or facial recognition are
based on this early pioneering work.

So what is ML? There appears to be no single
definition. However, according to leading organizations
and academic institutions, ML “is the science of getting
computers to act without being explicitly programmed”
(Stanford)4, “aims to produce machines that can learn
from their experiences and make predictions based on
those experiences and other data they have analyzed”
(Georgia Tech)5, “uses statistics to find patterns in
massive amounts of data” (MIT)6, and “is concerned
with programs or systems that build predictive models
from input data and uses the learned model to make
useful” (Google)7. Taken together, several common
aspects can be identified. First, ML is a method for
data analysis that automates analytical model building.
Second, these models can learn from data, identify
and predict patterns and make decisions with minimal

2https://en.wikipedia.org/wiki/Alpha-beta pruning
3https://en.wikipedia.org/wiki/Perceptron
4http://mlclass.stanford.edu/
5https://ml.gatech.edu/
6https://bit.ly/2OncBNm
7https://bit.ly/2CFqxj1

human intervention.
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Figure 1: Framing the ML Method Space — Area (•);
Categories (•); Methods (•)

With this perspective in mind, the question then
becomes how to make sense and organize the seemingly
exploding ML method space. Pending the disciplinary
background of the reader, there are likely several
ways to do that. Following a review of leading
introductory textbooks and survey research [19, 20,
21, 22], I posit that there are two common lenses
of framing ML methods (see Figure 1). One lens
occurs around the type of learning that a ML method
uses. Broadly considered, there are three key learning
models8: supervised, unsupervised, and reinforcement.
Supervised learning refers to the process of training a
model using labeled input and output data (i.e., training
data) to make accurate predictions about outputs based
on new data [23]. Supervised learning is one of the
most common learning types used in ML methods
and found pervasively in many real-world applications.
Recommendation systems by online marketplaces (e.g.,
Amazon) and content providers (e.g., Netflix, Spotify)
are largely powered by supervised learning. The more
the digital service is used, the better the system learns
and predicts what a user may like. Unsupervised
learning, on the other hand, does not use any labeled
data to find patterns in a dataset. It typically uses
grouping or clustering to achieve a desired goal. The
more data is fed into the model, the more refined
the output gets. Single-layer ML systems (those that
only use a single step to process data) are not very
efficient in dealing with unlabeled data; multi-layer
systems on the other hand, and those typically used
in deep learning, are more suited for this type of
data. Real-world examples of unsupervised learning
include audience segmentation, anomaly detection, and
chatbots. Reinforcement learning also uses unlabeled
data to reach a predefined goal. But in contrast to

8Some may argue that there are additional learning models,
including semi-supervised, instance-based, ensemble, etc. I focused
on three of the most common learning types.
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unsupervised learning, reinforcement learning uses a
reward/penalty-based scoring system to direct the model
[22]. Reinforcement learning is fairly new but has
been shown to be quite powerful in teaching AI system
play games (e.g., AlphaGo Zero9), support scientific
experiments, and robotics.

The other common lens of framing ML methods
is to group them in terms of their similarity (i.e.,
in terms of how they work). In contrast to the
learning type delineation, this approach provides a
more functional lens to organize the ML method
landscape. While not perfect, as some methods could
fit into multiple categories, I believe it offers a more
intuitive approach. With a high-level differentiation,
methods are organized into key ML areas (or subfields)
they occur in (e.g., computer vision, natural language
processing, audio, graphical models, etc.). Within each
area, methods are then grouped by similar categories
(e.g. regression algorithms, instance-based algorithms,
decision trees, Bayesian algorithms, artificial neural
network algorithms, etc.). A potential intermediate
level may further differentiate them by the types
of tasks it helps to address (e.g., object detection,
question answering, link prediction, etc.). To facilitate
exploration and sense-making, I opted to use a combined
area-category approach to organize the ML method
space.

3. Methodology

3.1. Data

To the best of my knowledge, there is no single
data source that tracks and classifies existing ML
methods and their application areas. Arguably one of
the most comprehensive sources for identifying ML
methods is GitHub, an open-access code repository.
While the purpose of the ML method may be noted
in the description section or read.me files of the
corresponding GitHub entry, the type of method or the
underlying algorithm may not be fully described. A
more comprehensive description of the ML method and
its application areas is likely found in corresponding
research papers. Many research teams post in-progress
and completed ML research papers on arxiv.org. A
promising new data repository that links these two data
sources is Papers With Code10, which was recently
acquired by Facebook AI. The mission of Papers With
Code is “to create a free and open resource with ML
papers, code and evaluation tables.” The repository
currently has nearly 26,000 papers with code, 760

9https://deepmind.com/blog/article/alphago-zero-starting-scratch
10https://paperswithcode.com/

methods, and 1,626 tasks (July 13, 2020). Using an
algorithmic- based and community-validated approach,
method(s) and task(s) for each paper are identified
and organized. I extracted all relevant data fields
necessary to build the ML method ecosystem (i.e.,
nodes, links, and their attributes) using custom R scripts
(code available upon request). All data is further cleaned
and organized in relational tables.

3.2. Network Construction

Given the nature of the data, I constructed three
types of multi-partite networks. Network ACM is a
tripartite method-hierarchy network, consisting of Area
(A) nodes (e.g., Computer Vision), Category (C) nodes
(e.g., Convolutional Neural Networks), and Method
(M) nodes (e.g., ResNet). In this network, there are
two types of directed edges: methods belonging to
categories and categories belonging to areas. Since
some methods can belong to one or more categories, I
do not expect a clean tree network structure. Moreover,
I posit that these category spanning method nodes will
play a particularly important role.

Network MM is a unipartite method-component
network, consisting of Method (M) nodes. In this
network, a directed edge indicates that a particular
method is a sub-component of another method,
thus representing a form of functional dependency
relationship.

3.3. Metrics

For each network I compute a number of important
graph theoretic metrics, including average degree (in,
out, total), average weighted degree, and betweenness
centrality [24]. To identify prominent subclusters in
each network, I used Louvain’s modularity algorithm
[25]. Since networks are time-varying, I compute each
of the metrics over time on a yearly basis.

3.4. Visualization

Following design considerations suggested by prior
work [26, 27, 28], I considered several different
visualization techniques to depict the ML methods
ecosystem. Given the hierarchical nature of the ACM
network, space-filling visualization techniques, such as
treemaps, sunbursts, or icicles were potential options
[29]. However, given that some methods may belong
to multiple categories, these techniques would fail.
Given that relationships and connectivity between ML
ecosystem entities are of primary interest in this study, I
opted for a traditional node-link representation.

I visualize the resulting networks using a
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——————- Categories (•) ——————- ———————————— Methods (•) ————————————

Area (•) # Examples # Examples First Latest Avg. Age

General 50 Regularization, Activation Function,
Normalization

318 relu, softmax, dropout 1943 2020 6.04

Computer Vision 39 Convolutional Neural Networks, Object
Detection Models, Generative Models

430 1x1 convolution, resnet,
faster-r-cnn, cyclegan

1980 2020 3.52

Natural Language Processing 15 Language Models, Transformers, Word
Embeddings

93 gpt-3, bert, ELMo, GloVe 2003 2020 1.82

Reinforcement Learning 14 Policy Gradient Methods, Q-Learning
Networks

57 ppo, dqn, ddpg 1984 2019 9.2

Audio 6 Generative Audio, Text-to-Speech
Models, Speech Synthesis Blocks

15 wavenet, Tacotron 2, CBHG 1984 2019 4.20

Sequential 6 Recurrent Neural Networks,
Sequence-to-Sequence Models,
Temporal Convolutions

36 lstm, seq2seq 1997 2020 4.82

Graphs 2 Graph Models, Graph Embeddings 6 gcn, gat, node2vec 2013 2017 4.5

Table 1: ML Method Ecosystem Data Summary.

combination of several custom force-directed
algorithms that optimize the overall inter-node
repulsion and clustering in the network, including the
proportional Yifan Hu layout [30] and the OpenORD
layout [31]. I also apply a no-overlap heuristic to
avoid node occlusion and improve readability [32]. I
color-encode and size nodes by different existing and
computed metrics.All visualizations are implemented
in Gephi 0.9.2, an open-source software for visualizing
and analyzing large network graphs [33].

4. Results

Table 1 provides a summary of the seven ML areas,
categories, and methods, and identifies some illustrative
examples. The Computer Vision area (430) has the most
methods followed by the General (318) and Natural
Language Processing (93) areas. The first methods in
each area appeared quite early, except for Graphs, which
is a more recent area (2017). Almost all ML areas had
new methods introduced in the last two years (2019 and
2020). The average age of methods ranges from 1.82
years (in Natural Language Processing) to 9.2 years (in
Reinforcement Learning).

Figure 2 shows the structure of the ML methods
ecosystem. The ecosystem contains 895 nodes (7
areas, 127 categories, and 760 methods) and 1,285
hierarchical links. Nodes are colored by the three
node types and labeled11; edges are colored by source
node to emphasize the parent connection. The
visualization reveals that the ML methods ecosystem
consists primarily of a single, large giant component
(subnetwork) and several much smaller disconnected
clusters (e.g., reinforcement learning and graph
models). This highlights two things: first, since the

11To reduce clutter, but provide full annotation, I chose small labels.
When opened with a pdf-viewer and zoomed in, the labels can be read
more clearly.

ML ecosystem is highly integrated, a few methods
are category spanning and connect the ACM network.
Second, methods in reinforcement learning and graph
models are more autonomous from the remainder of the
ML method ecosystem.

Figures 3a-c shows the evolution of the ML method
ecosystem over time using a small multiple visualization
approach. I split the overall timeframe - the occurrence
of the first ML method until present - into four
cumulative periods (pre-2005, 2006-2010, 2011-2015,
2016-2020) and annotate some of the key structural
characteristics and changes. Several observations can
be made. The first observation is that the pre-2005
period had already established a substantive number of
ML methods, while likely not referred to as such, across
almost all major ML areas (see Figure 3a). The primary
focus of these methods were in the areas of General,
Computer Vision, and Reinforcement Learning. The
second observation is that there was very little structural
change into the 2006-2010 timeframe (see Figure 3b).
Modest additions were in Generative Models, Heuristic
Search Algorithms, and Normalization. One explanation
for the lack of development is that enabling technologies
advances had not yet occurred and ML was not yet
widely diffused. A significant increase in ML methods
occurred between 2011-2016, with the emergence of the
Graph area and growth focused in categories such as
Image Models, Convolutional Neural Networks, Object
Detection Models, Recurrent Neural Networks, and
Language Models (see Figure 3c). One important
finding is the emergence of methods in the Image
Model Blocks category which connect the Computer
Vision and General ML method areas. Finally, the
most massive shift occurs during the most recent
time period (2016-2020) (see Figure 3d). Significant
structural growth occurs across almost all areas and
categories, but in particular in Convolutional Neural
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Figure 2: The ML Methods Ecosystem — Area (•); Categories (•); Methods (•).
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Figure 3: Evolution of the ML Methods Ecosystem — Area (•); Categories (•); Methods (•).
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Figure 4: Method Interdependency Network — pre-2005-2015 Methods (•); 2016-2020 Methods (•).

Networks, Language Models, Image Model Blocks, Skip
Connection Blocks, Object Detection Models, Feature
Extractors, and Normalization. This growth is clearly
a result of rapid advances in enabling technologies,
the increased use of ML in a wide range of digital
products and services, and the reusability of existing
ML methods. This last point is more pronounced in the
analysis that follows.

Figure 4 shows the method interdependency
network. Since not all components have dependencies,
I focus only on the main component of this network.
The size of this network is 610 method nodes (80.2%
of total method nodes). A few notes on how to interpret
this custom visualization. First, since this is a unipartite
network, all nodes are methods. I use a two-color
encoding scheme to denote pre-2016 methods in blue
(•) and more recently launched methods in fuchsia
(•). I size nodes by weighted out-degree, indicating
their level of influence on the network. I color-encode
edges by the source. Second, the layout was generated
using a period-clustered force-directed layout. In other
words, nodes belonging to the same period are clustered
together. I positioned the most recent period to the
right (as would be typical in a timeline) and the three
other periods to the left of it in a manner that reduces

edge crossings. I should also note that I utilized curved
edges to visually highlight the directionality between
methods. Specifically, I used a clockwise-directed edge
to denote the dependent components of a method.

The visualization reveals several important findings.
Following the directionality of the large band of edges,
there is clearly a temporal sequence to ML methods
development over the four periods. Many of the
methods developed pre-2005 have been foundational to
methods developed in 2011-2015 as well as 2016-2020.
Similarly, we see that 2011-2015 methods are important
components of more recent methods. On the other hand,
methods developed in 2006-2010 only weakly influence
their subsequent periods. Second, we also see some
recursive influences of methods. For instance, methods
developed in 2011-2015 and 2016-2020 influence
methods developed in prior periods. The influence
is likely on updated iterations of those methods.
Third, when examining the interconnectedness within
each time period cluster, it is quite evident to see
that the highest density is in the most recent time
period, suggesting a much greater co-influence of
contemporaneous methods. When considering the
size of the nodes, which indicates its importance in
method development, we observe that some of the

Page 5877



most influential nodes are found in the most recent
time period. Only few older methods are prominent.
Examples include alphastar, googlenet, inception-v3,
and resnet. Together these observations suggest that
while methods build on top of each other, most recent
methods are likely driving new method innovation.

5. Discussion

The exploratory analysis presented in this study
provides several important insights into the organizing
structure and evolution of the ML methods ecosystem,
specifically, and digital (algorithm) innovation more
broadly.

First, the visual analysis highlights that the ML
methods ecosystem is not a pure hierarchical, but
rather a complex networked system (as shown in Figure
2). While most methods fit into singular categories,
there are quite a significant number of methods than
span multiple categories as well as areas. Broadly
considered, this finding suggests that the majority
of ML methods are typically engineered to address
area- and category-specific tasks. Methods that are
boundary spanning highlight that there are tasks that are
cross-disciplinary, for instance methods that sit at the
intersection of Audio and Natural Language Processing.
As ML application areas become more intertwined, and
boundaries may blur, it can be reasonably argued that
more cross-area methods may emerge.

Second, the evolutionary analysis of the ML
methods ecosystem highlights that algorithm
development has followed differing speeds both at
a macro- and micro-network level, with periods of
slow downs as well as significant acceleration. What
explains this evolution? Existing theories in traditional

product innovation suggest that products and product
categories evolve incrementally until a dominant
design appears or the area is matured [34, 35, 36].
Similarly, industry life cycle theory suggests that
industries go through multiple stages including
development, growth, shakeout, maturity, and decline
[34, 36, 37]. Technological hype cycles propose that
technologies progress through successive stages that
are pronounced by a peak, followed by disappointment,
and later a recovery of expectations [38, 39]. Using
these lenses, the ML method ecosystem appears to
have gone through the first few phases, influenced
by supply (e.g., technology maturity, competition,
enabling infrastructures), demand (e.g., market need),
and contextual factors (economic conditions, social,
geography, policy, etc.).

Third, our temporal interdependency analysis
reveals that there is a strong sequential development
in ML methods (see Figure 4). Prior methods act
as salient foundational components to more recent
methods suggesting both incremental and building block
development. The level of interdependency is most
pronounced in the most recent period. Furthermore,
some methods are structurally more influential than
others. These findings strongly underline some of
the core ideas of digital artifacts and innovation, in
particular modularity, generativity, and platformication
[40, 41, 42, 43].

While this study represents an important first
step, many exciting future research questions for
understanding the ML ecosystem remain. Broadly
considered, potential extensions include investigations
related to method usage, quality, performance, updates,
developers, and development frameworks (see Table 2).

Lens of Inquiry Potential Research Questions

Usage How often has the method been used/cited? How popular is the method? For what types of tasks has the method
been used? How often has the method been combined with others (ensembles)? What dataset has been used?
How has the method been implemented? What licensing models are used?

Quality How has the method been rated? How often has the method been forked? How well documented is the method?
Performance How well does the method perform? How accurate are predictions by the method (classification accuracy,

confusion matrix, log-loss, AUC, etc.)? How has performance improved overtime?
Updates What practices are used to coordinate, test, release, and maintain ML code? How often are methods updated?

Who updates the method? What is the reason for the update? What are the incremental changes?
Developer(s) Who are lead developers of ML Methods? Is the lead developer a private organization or public company?

How are the development communities organized? What is the geographic footprint of the developer base?
What role do leading companies and organizations play in the design, development, and distribution of ML
methods? How does ML method development differ to traditional open source development? What are the
motivations/incentives for ML developers?

Development Framework(s) What development frameworks are used to implement the method (e.g., PyTorch, TensorFlow, Keras)? How
well-designed are the APIs of these frameworks? How pervasive are implementations between research and
productions?

Competitive Dynamics What is the relationship between open source ML development and competition? What strategies do
organizations use?

Table 2: Open Research Opportunities
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6. Concluding Remarks

Machine learning is unquestionably a rapidly
evolving field, with new methods, contributors, and
challenges emerging on a continuous basis. Yet, given
the speed, scale, and complexity, an understanding of
the ML method space can be challenging. In this
exploratory study, I used a visual, data-driven approach
to map the ML method landscape to determine both the
structure and dynamics of this important AI domain.
The investigation revealed numerous important insights
into how the ML field is evolving, how new methods
emerge, and what areas are growing or slowing down.
The study is merely a first step towards a systematic
understanding of ML innovation. Moreover, it is not
without gaps and limitations. I highlight some of
them in the discussion section and posit that each of
them is an exciting future research direction. Our
understanding of the ML space is still in its infancy and
more work is needed to uncover the intricacies of this
dynamic ecosystem. I hope that this study will provide
a stimulating first step for the research community.
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