Intercellular Signaling Activity Encoded by hetN in the Cyanobacterium Anabaena sp. strain PCC 7120.
Date
2017-08
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
University of Hawaii at Manoa
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Developmental regulators coordinate cellular differentiation in many organisms. Regulators can be small molecules or proteins. Developmental regulators called morphogens are produced in source cell(s) that determine the developmental fate of cells adjacent to the source in a concentration dependent manner. The filamentous cyanobacterium Anabaena sp. Strain PCC 7120 is a model organism used to study cellular differentiation. When Anabaena filaments are supplied a source of fixed nitrogen a single cell type, vegetative cells, comprise the filaments. However, removal of fixed nitrogen from the medium induces differentiation of one in every 10- 15 cells into a heterocyst. Heterocysts are terminally differentiated cells that are the sites of atmospheric nitrogen fixation. Differentiation within Anabaena requires 24 hours and can be divided into four stages: induction, patterning, commitment, and morphogenesis. The periodic pattern of heterocyst is initially determined by the interplay of HetR, the primary activator of differentiation within Anabaena, and PatS, a diffusible inhibitor expressed during the patterning stage. The initial pattern of heterocysts in maintained during growth by a secondary inhibitor, HetN, which is expressed in mature heterocysts. The pentapeptide sequence RGSGR is conserved in the amino acid sequences of both inhibitors and has been shown to inhibit differentiation and induce HetR degradation when added to the medium, bind directly to HetR in vitro, and is required for the inhibitory function of PatS. In this work HetN was found to require the RGSGR sequence for inhibitory function and did not require predicted ketoacyl reductase activity. Full-length HetN was found to be confined to source cell(s) membranes, but a hetNdependent inhibitory signal was shown to move away from source heterocysts in a manner similar to a paracrine-type intercellular signal. The hetN-dependent inhibitory signal was found not to require the intercellular channel forming protein SepJ. However, mutation of sepJ reduced the signal range of the HetN-dependent inhibitory signal, suggesting its involvement in signal transport. Finally, evidence supporting the use of M119 of HetN as the developmentally regulated translational start site is presented. This work contributes to our knowledge of morphogen signals and supports the role of HetN as an inhibitory morphogen within Anabaena.
Description
Keywords
Anabaena
Citation
Extent
Format
Geographic Location
Time Period
Related To
Related To (URI)
Table of Contents
Rights
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.