Application of the Technology Acceptance Model to an Intelligent Cost Estimation System: An Empirical Study in the Automotive Industry

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Cost estimation methods are crucial to support inter- and intraorganizational cost management. Despite intense research on machine learning and deep learning for the prediction of costs, the acceptance of such models in practice remains unclear. The aim of this study is to evaluate the acceptance of an implemented deep learning-based cost estimation system. In an empirical study at a large Bavarian automotive manufacturer we use surveys to collect opinions and concerns from experts who regularly use the system. The evaluation is framed by the basic theories of the Technology Acceptance Model. The results from 50 questionnaires and qualitative participant observations show further development potentials of intelligent cost estimation systems in terms of perceived usefulness and user-friendliness. Building on our empirical findings we provide implications for both research and practice.

Description

Keywords

Big Data and Analytics: Pathways to Maturity, technology acceptance model, intelligent cost estimation, emprical study, automotive industry

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.